




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山西省大同市阳高县第一中学数学高一上期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若将函数的图象向左平移个单位长度,则平移后图象的对称轴为()A. B.C. D.2.函数的零点所在区间为()A. B.C. D.3.已知函数,将图象向右平移个单位长度得到函数的图象,若对任意,都有成立,则的值为A. B.1C. D.24.已知,则()A. B.1C. D.25.若函数满足,则A. B.C. D.6.设,则“”是“”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件7.下列命题中正确的个数是()①两条直线,没有公共点,那么,是异面直线②若直线上有无数个点不在平面内,则③空间中如果两个角的两边分别对应平行,那么这两个角相等或互补④若直线与平面平行,则直线与平面内的任意一条直线都没有公共点A. B.C. D.8.函数在的图象大致为()A. B.C. D.9.16、17世纪,随着社会各领域的科学知识迅速发展,庞大的数学计算需求对数学运算提出了更高要求,改进计算方法,提高计算速度和准确度成了当务之急.苏格兰数学家纳皮尔发明了对数,是简化大数运算的有效工具,恩格斯曾把纳皮尔的对数称为十七世纪的三大数学发明之一.已知,,设,则所在的区间为(是自然对数的底数)()A. B.C. D.10.已知点,向量,若,则点的坐标为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设角的顶点与坐标原点重合,始变与轴的非负半轴重合,若角的终边上一点的坐标为,则的值为__________12.计算_________.13.已知角终边经过点,则___________.14.计算:___________.15.已知点,直线与线段相交,则实数的取值范围是____;16.已知向量,写出一个与共线的非零向量的坐标__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其中.(1)当时,求的值域和单调区间;(2)若存在单调递增区间,求a的取值范围.18.已知函数,函数.(1)填空:函数的增区间为___________(2)若命题“”为真命题,求实数的取值范围;(3)是否存在实数,使函数在上的最大值为?如果存在,求出实数所有的值.如果不存在,说明理由.19.为推动治理交通拥堵、停车难等城市病,不断提升城市道路交通治理能力现代化水平,乐山市政府决定从2021年6月1日起实施“差别化停车收费”,收费标准讨论稿如下:A方案:首小时内3元,2-4小时为每小时1元(不足1小时按1小时计),以后每半小时1元(不足半小时按半小时计);单日最高收费不超过18元.B方案:每小时1.6元(1)分别求两个方案中,停车费y(元)与停车时间(小时)之间的函数关系式;(2)假如你的停车时间不超过4小时,方案A与方案B如何选择?并说明理由(定义:大于或等于实数x的最小整数称为x的向上取整部分,记作,比如:,)20.义域为的函数满足:对任意实数x,y均有,且,又当时,.(1)求的值,并证明:当时,;(2)若不等式对任意恒成立,求实数的取值范围.21.已知函数(,且)(1)求的值及函数的定义域;(2)若函数在上的最大值与最小值之差为3,求实数的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由题意得,将函数的图象向左平移个单位长度,得到,由,得,即平移后的函数的对称轴方程为,故选C2、B【解析】根据零点存在性定理即可判断求解.【详解】∵f(x)定义域为R,且f(x)在R上单调递增,又∵f(1)=-10<0,f(2)=19>0,∴f(x)在(1,2)上存在唯一零点.故选:B.3、D【解析】利用辅助角公式化简的解析式,再利用正弦型函数的图象变换规律,正弦函数的图象的对称性,求得的值【详解】,(其中,),将图象向右平移个单位长度得到函数的图象,得到,∴,,解得,故选D.4、D【解析】根据指数和对数的关系,将指数式化为对数式,再根据换底公式及对数的运算法则计算可得;【详解】解:,,,,故选:D5、A【解析】,所以,选A.6、D【解析】若,则,故不充分;若,则,而,故不必要,故选D.考点:本小题主要考查不等式的性质,熟练不等式的性质是解答好本类题目的关键.7、C【解析】①由两直线的位置关系判断;②由直线与平面的位置关系判断;③由空间角定理判断;④由直线与平面平行的定义判断.【详解】①两条直线,没有公共点,那么,平行或异面直线,故错误;②若直线上有无数个点不在平面内,则或相交,故错误;③由空间角定理知,正确;④由直线与平面平行的定义知,正确;故选:C8、A【解析】根据函数解析式,结合特殊值,即可判断函数图象.【详解】设,则,故为上的偶函数,故排除B又,,排除C、D故选:A.【点睛】本题考查图象识别,注意从函数的奇偶性、单调性和特殊点函数值的正负等方面去判断,本题属于中档题.9、A【解析】根据指数与对数运算法则直接计算.【详解】,所以故选:A.10、B【解析】设点坐标为,利用向量的坐标运算建立方程组,解之可得选项.【详解】设点坐标为,,A,所以,又,,所以.解得,解得点坐标为.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】12、1【解析】,故答案为113、【解析】根据正切函数定义计算【详解】由题意故答案为:14、7【解析】直接利用对数的运算法则以及指数幂的运算法则化简即可.【详解】.故答案为:7.15、【解析】由直线,即,此时直线恒过点,则直线的斜率,直线的斜率,若直线与线段相交,则,即,所以实数的取值范围是点睛:本题考查了两条直线的位置关系的应用,其中解答中把直线与线段有交点转化为直线间的斜率之间的关系是解答的关键,同时要熟记直线方程的各种形式和直线过定点的判定,此类问题解答中把直线与线段有交点转化为定点与线段端点斜率之间关系是常见的一种解题方法,着重考查了学生分析问题和解答问题的能力16、(纵坐标为横坐标2倍即可,答案不唯一)【解析】向量与共线的非零向量的坐标纵坐标为横坐标2倍,例如(2,4)故答案为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】(1)利用换元法设,求出的范围,再由对数函数的性质得出值域,再结合复合函数的单调性得出的单调区间;(2)分别讨论,两种情况,结合复合函数的单调性以及二次函数的性质得出a的取值范围.【详解】(1)当时,设,由,解得即函数的定义域为,此时则,即的值域为要求单调增(减)区间,等价于求的增(减)区间在区间上单调递增,在区间上单调递减在区间上单调递增,在区间上单调递减(2)当时,存在单调递增区间,则函数存在单调递增区间则判别式,解得或(舍)当时,存在单调递增区间,则函数存在单调递减区间则判别式,解得或,此时不成立综上,a的取值范围为【点睛】关键点睛:本题主要考查了对数型复合函数的单调性问题,解题的关键在于利用复合函数单调性的性质进行求解.18、(1)(写出开区间亦可);(2);(3).【解析】(1)根据单调性的定义结合奇偶性可得解;(2)令,问题转化为“”为真命题,根据基本不等式找函数的最小值即可;(3)当时,,记,若函数在上的最大值为,分和,结合对数函数的单调性列式求解即可.【详解】(1)函数的增区间为(写出开区间亦可);理由:,为偶函数,任取,,所以的增区间为.(2),令,当且仅当时取“”,“”为真命题可转化为“”为真命题,因为,当且仅当时取“”,所以,所以;(3)由(1)可知,当时,,记,若函数在上的最大值为,则1)当,即时,在上最小值为1,因为图象的对称轴为,所以,解得,符合题意;2)当,即时,在上最大值为1,且恒成立,因为图象是开口向上的抛物线,在的最大值可能是或,若,则,不符合题意,若,则,此时对称轴,由,不合题意0.综上所述,只有符合条件.【点睛】本题主要考查了对数型、指数型的复合函数的单调性及最值问题。解题的关键是换元,将复杂的函数化为简单的函数,解决对数型的复合函数时要注意真数大于0这个隐含条件,属于难题.19、(1),(2)当停车时间不超过3.75小时,选B方案;当停车时间大于3.75小时不超过4小时,选A方案,理由见解析.【解析】(1)根据题意可得答案;(2)根据(1)的答案分析即可.【小问1详解】根据题意可得:A方案:当,;当时,当时,;当,所以B方案:【小问2详解】显然当时,;又因为,,所以存在,使得,即,解得故当停车时间不超过3.75小时,选B方案;当停车时间大于3.75小时不超过4小时,选A方案20、(1)答案见解析;(2)或.【解析】(1)利用赋值法计算可得,设,则,利用拆项:即可证得:当时,;(2)结合(1)的结论可证得是增函数,据此脱去f符号,原问题转化为在上恒成立,分离参数有:恒成立,结合基本不等式的结论可得实数的取值范围是或.试题解析:(1)令,得,令,得,令,得,设,则,因为,所以;(2)设,
,
因为所以,所以为增
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年艺术心理学研究生入学考试试卷及答案
- 2025年职业道德与法律专业本科毕业考试试卷及答案
- 2025年现代农业与农村发展新模式能力测评试题及答案
- 2025年人因工程师专业考试试题及答案
- 2025年人工智能应用工程师资格考试试卷及答案
- 2025年金融及保险法专业考试试卷及答案
- 2025年老年服务与管理职业资格考试试卷及答案
- 2025年国防教育与安全意识的能力考核考试卷及答案
- 2025年初中生语文能力测评试卷及答案
- 电商的下半年工作计划
- 江苏省高邮市2025届八下英语期末调研模拟试题含答案
- 2025安全生产月一把手讲安全公开课主题宣讲三十三(60P)
- 2024-2025学年山东省济南市市中区八年级(下)期末数学试卷(含解析)
- 儿童用药合理使用课件
- 2025-2030年中国发泡包装行业市场现状供需分析及投资评估规划分析研究报告
- 2025至2030中国材料疲劳试验机行业项目调研及市场前景预测评估报告
- 2025年陕西、山西、宁夏、青海四省(陕晋宁青)高考 生物真题试卷 附答案
- 2025春季学期国开电大本科《人文英语4》一平台机考真题及答案(第五套)
- 2024年西昌市教育和体育局考核聘用公立幼儿园教师真题
- 2025年全国高考数学真题全国2卷
- 2025年高考数学全国二卷试题真题及答案详解(精校打印)
评论
0/150
提交评论