2025届福建省闽侯第一中学高一上数学期末检测试题含解析_第1页
2025届福建省闽侯第一中学高一上数学期末检测试题含解析_第2页
2025届福建省闽侯第一中学高一上数学期末检测试题含解析_第3页
2025届福建省闽侯第一中学高一上数学期末检测试题含解析_第4页
2025届福建省闽侯第一中学高一上数学期末检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届福建省闽侯第一中学高一上数学期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若是的重心,且(,为实数),则()A. B.1C. D.2.已知圆C:x2+y2+2x=0与过点A(1,0)的直线l有公共点,则直线l斜率k的取值范围是()A. B.C. D.3.将函数的图象向左平移个单位长度得到函数的图象,下列说法正确的是()A.是奇函数 B.的周期是C.的图象关于直线对称 D.的图象关于点对称4.函数与的图象()A.关于轴对称 B.关于轴对称C.关于原点对称 D.关于直线轴对称5.若是钝角,则是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角6.直线的斜率为,在y轴上的截距为b,则有()A. B.C. D.7.O为正方体底面ABCD的中心,则直线与的夹角为A. B.C. D.8.函数的零点所在区间是()A. B.C. D.9.已知函数,,则函数的值域为()A. B.C. D.10.已知梯形是直角梯形,按照斜二测画法画出它的直观图(如图所示),其中,,,则直角梯形边的长度是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数若是函数的最小值,则实数a的取值范围为______12.已知,则____________13.已知直线,直线若,则______________14.已知y=f(x)是奇函数,当x≥0时,,则f(-8)的值是____.15.已知定义域为的奇函数,则的解集为__________.16.已知角的终边过点,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,.若,求的取值范围.18.已知函数,(1)试比较与的大小关系,并给出证明;(2)解方程:;(3)求函数,(是实数)的最小值19.已知函数,.(1)求的最小正周期和最大值;(2)设,求函数的单调区间.20.已知函数在上的最大值与最小值之和为(1)求实数的值;(2)对于任意的,不等式恒成立,求实数的取值范围21.设全集为R,集合P={x|3<x≤13},非空集合Q={x|a+1≤x<2a-5},(1)若a=10,求P∩Q;;(2)若,求实数a的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】若与边的交点为,再由三角形中线的向量表示即可.【详解】若与边交点为,则为边上的中线,所以,又因为,所以故选:A【点睛】此题为基础题,考查向量的线性运算.2、B【解析】利用点到直线的距离公式和直线和圆的位置关系直接求解【详解】根据题意得,圆心(﹣1,0),r=1,设直线方程为y﹣0=k(x﹣1),即kx﹣y﹣k=0∴圆心到直线的距离d1,解得k故选B【点睛】本题考查直线和圆的位置关系,点到直线的距离公式,属于基础题3、D【解析】利用三角函数图象变换可得函数的解析式,然后利用余弦型函数的基本性质逐项判断可得出正确选项.【详解】由题意可得,对于A,函数是偶函数,A错误:对于B,函数最小周期是,B错误;对于C,由,则直线不是函数图象的对称轴,C错误;对于D,由,则是函数图象的一个对称中心,D正确.故选:D.4、D【解析】函数与互为反函数,然后可得答案.【详解】函数与互为反函数,它们的图象关于直线轴对称故选:D5、D【解析】由求出,结合不等式性质即可求解.【详解】,,,在第四象限.故选:D6、A【解析】将直线方程化为斜截式,由此求得正确答案.【详解】,所以.故选:A7、D【解析】推导出A1C1⊥BD,A1C1⊥DD1,从而D1O⊂平面BDD1,由此得到A1C1⊥D1O【详解】∵O为正方体ABCD﹣A1B1C1D1底面ABCD的中心,∴A1C1⊥BD,A1C1⊥DD1,∵BD∩DD1=D,∴A1C1⊥平面BDD1,∵D1O⊂平面BDD1,∴A1C1⊥D1O故答案为:D【点睛】本题考查与已知直线垂直的直线的判断,是中档题,做题时要认真审题,注意线面垂直的性质的合理运用8、B【解析】判断函数的单调性,根据函数零点存在性定理即可判断.【详解】函数的定义域为,且函数在上单调递减;在上单调递减,所以函数为定义在上的连续减函数,又当时,,当时,,两函数值异号,所以函数的零点所在区间是,故选:B.9、B【解析】根据给定条件换元,借助二次函数在闭区间上的最值即可作答.【详解】依题意,函数,,令,则在上单调递增,即,于是有,当时,,此时,,当时,,此时,,所以函数的值域为.故选:B10、B【解析】根据斜二测画法,原来的高变成了方向的线段,且长度是原高的一半,原高为而横向长度不变,且梯形是直角梯形,故选二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】考虑分段函数的两段函数的最小值,要使是函数的最小值,应满足哪些条件,据此列出关于a的不等式,解得答案.【详解】要使是函数的最小值,则当时,函数应为减函数,那么此时图象的对称轴应位于y轴上或y轴右侧,即当时,,当且仅当x=1时取等号,则,解得,所以,故答案为:.12、##0.8【解析】利用同角三角函数的基本关系,将弦化切再代入求值【详解】解:,则,故答案为:13、【解析】由两条直线垂直,可得,解方程即可求解.详解】若,则,解得,故答案为:【点睛】本题考查了由两条直线互相垂直,求参数的范围,熟练掌握直线垂直的充要条件是解题的关键,考查了运算能力,属于基础题.14、【解析】先求,再根据奇函数求【详解】,因为为奇函数,所以故答案为:【点睛】本题考查根据奇函数性质求函数值,考查基本分析求解能力,属基础题.15、【解析】根据奇函数的性质及定义域的对称性,求得参数a,b的值,求得函数解析式,并判断单调性.等价于,根据单调性将不等式转化为自变量的大小关系,结合定义域求得解集.【详解】由题知,,则恒成立,即,,又定义域应关于原点对称,则,解得,因此,,易知函数单增,故等价于即,解得故答案为:16、【解析】∵角的终边过点(3,-4),∴x=3,y=-4,r=5,∴cos=故答案为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、.【解析】利用对函数数的性质化简,利用一元二次不等式的解法,讨论,,三种情况,分别分析集合,再结合,解得的取值范围【详解】由,得,解得,即,由,得,当时,是空集,不满足,不符合题意,舍去;当时,,不满足,不符合题意,舍去;当时,解得,因为,所以的取值范围是.18、(1)(2)或.(3)【解析】(1)与作差,配方后即可得;(2)原方程化为,设,可得,进而可得结果;(3)令,则,函数可化为,利用二次函数的性质分情况讨论,分别求出两段函数的最小值,比较大小后可得各种情况下函数,(是实数)的最小值.试题解析:(1)因为,所以(2)由,得,令,则,故原方程可化为,解得,或(舍去),则,即,解得或,所以或(3)令,则,函数可化为①若,当时,,对称轴,此时;当时,,对称轴,此时,故,②若,当,,对称轴,此时;当时,,对称轴,此时,故,③若,当时,,对称轴,此时;当时,,对称轴,此时,故,;④若,当时,,对称轴,此时;当时,,对称轴,此时,则时,,时,,故,⑤若,当时,,对称轴,此时;当时,,对称轴,此时,因为时,,故,综述:【方法点睛】本题主要考查指数函数的性质分段函数的解析式和性质、分类讨论思想及方程的根与系数的关系.属于难题.分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.19、(1)最小正周期为,最大值.(2)单调减区间为,单调增区间为【解析】(1)利用三角恒等变换化简函数解析式为,利用正弦型函数的周期公式以及正弦函数的有界性可求得结果;(2)求得,利用余弦型函数的基本性质可求得函数的增区间和减区间.小问1详解】解:.所以,的最小正周期.当时,取得最大值【小问2详解】解:由(1)知,又,由,解得,所以,函数的单调增区间为.由,解得.所以,函数的单调减区间为.20、(1);(2)【解析】(1)根据指对数函数的单调性得函数在上是单调函数,进而得,解方程得;(2)根据题意,将问题转化为对于任意的,恒成立,进而求函数的最值即可.【详解】解:(1)因为函数在上的单调性相同,所以函数在上是单调函数,所以函数在上的最大值与最小值之和为,所以,解得和(舍)所以实数的值为.(2)由(1)得,因为对于任意的,不等式恒成立,所以对于任意的,恒成立,当时,为单调递增函数,所以,所以,即所以实数的取值范围【点睛】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论