




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届朔州市重点中学高一上数学期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.如图()四边形为直角梯形,动点从点出发,由沿边运动,设点运动的路程为,面积为.若函数的图象如图(),则的面积为()A. B.C. D.3.已知扇形的面积为9,半径为3,则扇形的圆心角(正角)的弧度数为()A.1 B.C.2 D.4.函数的定义域为A B.C. D.5.设m,n是两条不同直线,,是两个不同的平面,下列命题正确的是A.,且,则B.,,,,则C.,,,则D.,且,则6.已知,若,则的取值范围是()A. B.C. D.7.如图,向量,,的起点与终点均在正方形网格的格点上,则向量用基底,表示为A. B.C. D.8.已知函数是定义域为奇函数,当时,,则不等式的解集为A. B.C. D.9.如图,在平面四边形中,,,,将其沿对角线折成四面体,使平面平面,若四面体顶点在同一球面上,则该球的表面积为()A. B.C. D.10.下列命题中正确的个数是()①两条直线,没有公共点,那么,是异面直线②若直线上有无数个点不在平面内,则③空间中如果两个角的两边分别对应平行,那么这两个角相等或互补④若直线与平面平行,则直线与平面内的任意一条直线都没有公共点A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11._____.12.设,若存在使得关于x的方程恰有六个解,则b的取值范围是______13.已知集合,,则集合________.14.已知是内一点,,记的面积为,的面积为,则__________15.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.现有两名剪纸艺人创作甲、乙两种作品,他们在一天中的工作情况如图所示,其中点Ai的横、纵坐标分别为第i名艺人上午创作的甲作品数和乙作品数,点Bi的横、纵坐标分别为第i名艺人下午创作的甲作品数和乙作品数,i=1,①该天上午第1名艺人创作的甲作品数比乙作品数少;②该天下午第1名艺人创作的乙作品数比第2名艺人创作的乙作品数少;③该天第1名艺人创作的作品总数比第2名艺人创作的作品总数少;④该天第2名艺人创作的作品总数比第1名艺人创作的作品总数少.其中所有正确结论序号是___________.16.16/17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急,约翰纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数.后来天才数学家欧拉发现了对数与指数的关系,即.现在已知,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.我们知道,声音由物体的振动产生,以波的形式在一定的介质(如固体、液体、气体)中进行传播.在物理学中,声波在单位时间内作用在与其传递方向垂直的单位面积上的能量称为声强I().但在实际生活中,常用声音的声强级D(分贝)来度量.为了描述声强级D()与声强I()之间的函数关系,经过多次测定,得到如下数据:组别1234567声强I()①声强级D()1013.0114.7716.022040②现有以下三种函数模型供选择:(1)试根据第1-5组的数据选出你认为符合实际的函数模型,简单叙述理由,并根据第1组和第5组数据求出相应的解析式;(2)根据(1)中所求解析式,结合表中已知数据,求出表格中①、②数据的值;(3)已知烟花的噪声分贝一般在,其声强为;鞭炮的噪声分贝一般在,其声强为;飞机起飞时发动机的噪声分贝一般在,其声强为,试判断与的大小关系,并说明理由18.已知函数(1)求函数的单调区间;(2)求函数图象的对称中心的坐标和对称轴方程19.如图,四棱锥中,底面为矩形,面,为的中点(1)证明:平面;(2)设,,三棱锥的体积,求A到平面PBC的距离20.已知函数(1)求函数的单调递增区间;(2)若,求函数的取值范围21.已知函数,.(1)当时,解关于的方程;(2)当时,函数在有零点,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】说明由可得得到,通过特例说明无法从得到,从而得到是的充分不必要条件.【详解】由,可得,由,即,,解得或.于是,由能推出,反之不成立.所以是充分不必要条件.故选:A.【点睛】本题考查充分不必要条件的判断,属于简单题.2、B【解析】由题意,当在上时,;当在上时,图()在,时图象发生变化,由此可知,,根据勾股定理,可得,所以本题选择B选项.3、C【解析】利用扇形面积公式即可求解.【详解】设扇形的圆心角的弧度数为,由题意得,得.故选:C.4、C【解析】要使得有意义,要满足真数大于0,且分母不能为0,即可求出定义域.【详解】要使得有意义,则要满足,解得.答案为C.【点睛】常见的定义域求解要满足:(1)分式:分母0;(2)偶次根式:被开方数0;(3)0次幂:底数0;(4)对数式:真数,底数且;(5):;5、D【解析】对每一个命题逐一判断得解.【详解】对于A,若m∥α,n∥β且α∥β,说明m、n是分别在平行平面内的直线,它们的位置关系应该是平行或异面或相交,故A不正确;对于B,若“m⊂α,n⊂α,m∥β,n∥β”,则“α∥β”也可能α∩β=l,所以B不成立对于C,根据面面垂直的性质,可知m⊥α,n⊂β,m⊥n,∴n∥α,∴α∥β也可能α∩β=l,也可能α⊥β,故C不正确;对于D,由m⊥α,n⊥β且α⊥β,则m与n一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m与n相交,且设m与n确定的平面为γ,则γ与α和β的交线所成的角即为α与β所成的角,因为α⊥β,所以m与n所成的角为90°,故命题D正确故答案为D【点睛】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力和空间想象能力.6、B【解析】由以及,可得,即得,再根据基本不等式即可求的取值范围.【详解】解:,不妨设,若,由,得:,即与矛盾;同理,也可导出矛盾,故,,即,而,即,即,当且仅当,即时等号成立,又,故,即的取值范围是.故选:B.7、C【解析】由题设有,所以,选C.8、A【解析】根据题意,由函数的解析式分析可得在为增函数且,结合函数的奇偶性分析可得在上为增函数,又由,则有,解可得的取值范围,即可得答案.【详解】根据题意,当时,,则在为增函数且,又由是定义在上的奇函数,则在上也为增函数,则在上为增函数,由,则有,解得:,即不等式的解集为;故选:A【点睛】本题考查函数奇偶性与单调性结合,解抽象函数不等式,有一定难度.9、B【解析】由题意,的中点就是球心,求出球的半径,即可得到球的表面积【详解】解:由题意,四面体顶点在同一个球面上,和都是直角三角形,所以的中点就是球心,所以,球的半径为:,所以球的表面积为:故选B【点睛】本题是基础题,考查四面体的外接球的表面积的求法,找出外接球的球心,是解题的关键,考查计算能力,空间想象能力10、C【解析】①由两直线的位置关系判断;②由直线与平面的位置关系判断;③由空间角定理判断;④由直线与平面平行的定义判断.【详解】①两条直线,没有公共点,那么,平行或异面直线,故错误;②若直线上有无数个点不在平面内,则或相交,故错误;③由空间角定理知,正确;④由直线与平面平行的定义知,正确;故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用诱导公式变形,再由两角和的余弦求解【详解】解:,故答案为【点睛】本题考查诱导公式的应用,考查两角和的余弦,是基础题12、【解析】作出f(x)的图像,当时,,当时,.令,则,则该关于t的方程有两个解、,设<,则,.令,则,据此求出a的范围,从而求出b的范围【详解】当时,,当时,,当时,,则f(x)图像如图所示:当时,,当时,令,则,∵关于x的方程恰有六个解,∴关于t的方程有两个解、,设<,则,,令,则,∴且,要存a满足条件,则,解得故答案为:13、【解析】根据集合的交集运算,即可求出结果.【详解】因为集合,,所以.故答案为:.14、【解析】设BC中点为M,则,所以P到BC的距离为点A到BC距离的,故15、①②④【解析】根据点的坐标的意义结合图形逐个分析判断即可【详解】对于①,由题意可知,A1的横、纵坐标分别为第1名艺人上午创作的甲作品数和乙作品数,由图可知A1的横坐标小于纵坐标,所以该天上午第对于②,由题意可知,B1的纵坐标为第1名艺人下午创作的乙作品数,B2的纵坐标为第2名艺人下午创作的乙作品数,由图可知B1的纵坐标小于B2的纵坐标,所以该天下午第对于③,④,由图可知,A1,B1的横、纵坐标之和大于A2故答案为:①②④16、2【解析】先根据要求将指数式转为对数式,作乘积运算时注意使用换底公式去计算.【详解】∵,∴,∴故答案为2【点睛】底数不同的两个对数式进行运算时,有时可以利用换底公式:将其转化为同底数的对数式进行运算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),理由见解析(2),(3),理由见解析【解析】(1)根据表格中的数据进行分析,可排除一次函数和二次函数,再根据待定系数法,即可得到结果;(2)由(1),令,可求出的值,即可知道①处的值;由已知可得时,可得,进而可求出当时的值,进而求出②处的值;(3)设烟花噪声、鞭炮噪声和飞机起飞时发动机噪声的声强级分别为,由已知可得,代入关系式,即可判断与的大小关系.【小问1详解】解:选择.由表格中的前四组数据可知,当自变量增加量为时,函数值的增加量不是同一个常数,所以不应该选择一次函数;同时当自变量增加量为时,函数值的增加量从变为,后又缩小为,函数值的增加量越来越小,也不应该选择二次函数;故应选择.由已知可得:,即,解之得所以解析式为.【小问2详解】解:由(1)知,令,可得,,故①处应填;由已知可得时,,所以,又当时,,故②处应填.【小问3详解】解:设烟花噪声、鞭炮噪声和飞机起飞时发动机噪声的声强级分别为,由已知,故有,所以,因此,即,所以.18、(1)增区间为,减区间为(2)对称中心的坐标为;对称轴方程为【解析】(1)将函数转化为,利用正弦函数的单调性求解;(2)利用正弦函数的对称性求解;【小问1详解】解:由.令,解得,令,解得,故函数的增区间为,减区间为;【小问2详解】令,解得,可得函数图象的对称中心的坐标为,令,解得,可得函数图象的对称轴方程为19、(1)证明见解析(2)到平面的距离为【解析】(1)连结BD、AC相交于O,连结OE,则PB∥OE,由此能证明PB∥平面ACE.(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出A到平面PBD的距离试题解析:(1)设BD交AC于点O,连结EO.因为ABCD为矩形,所以O为BD的中点又E为PD的中点,所以EO∥PB又EO平面AEC,PB平面AEC所以PB∥平面AEC.(2)由,可得.作交于由题设易知,所以故,又所以到平面的距离为法2:等体积法由,可得.由题设易知,得BC假设到平面的距离为d,又因为PB=所以又因为(或),,所以考点:线面平行的判定及点到面的距离
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 再生资源财务管理制度
- 民间防水补漏方案(3篇)
- 学校设备项目管理制度
- 学校红黄蓝牌管理制度
- 学校特异学生管理制度
- 工厂物流发货管理制度
- DB62T 4389-2021 西瓜品种 金瑞1号
- 企业收购谈判方案(3篇)
- 房屋改造物自制方案(3篇)
- 辞退赔偿方案(3篇)
- 装修木工清包合同协议书
- 江西报业传媒集团有限责任公司招聘笔试题库2025
- 分户山林土地分割协议书
- 2025年河北省中考乾坤押题卷英语试卷B及答案
- 2024-2025学年青岛版三年级下学期期末阶段综合检测数学试卷(含答案)
- 生产管理部部长竞聘
- 停车场物业合同协议书
- 中考英语熟词僻义生义用法梳理含练习
- 2025年苏教版数学小学四年级下册期末真题及答案(七)
- 2025年软件设计师考试模拟题大全试题及答案
- 2025-2030年中国别墅电梯行业市场现状供需分析及投资评估规划分析研究报告
评论
0/150
提交评论