广东省韶关市乐昌县2024年九年级数学第一学期开学考试试题【含答案】_第1页
广东省韶关市乐昌县2024年九年级数学第一学期开学考试试题【含答案】_第2页
广东省韶关市乐昌县2024年九年级数学第一学期开学考试试题【含答案】_第3页
广东省韶关市乐昌县2024年九年级数学第一学期开学考试试题【含答案】_第4页
广东省韶关市乐昌县2024年九年级数学第一学期开学考试试题【含答案】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页广东省韶关市乐昌县2024年九年级数学第一学期开学考试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列计算正确的是()A.=±2 B.+= C.÷=2 D.=42、(4分)已知x(x﹣2)=3,则代数式2x2﹣4x﹣7的值为()A.6 B.﹣4 C.13 D.﹣13、(4分)化简的结果为()A.﹣ B.﹣y C. D.4、(4分)在下列命题中,是假命题的个数有()①如果,那么.②两条直线被第三条直线所截,同位角相等③面积相等的两个三角形全等④三角形的一个外角等于不相邻的两个内角的和.A.3个 B.2个 C.1个 D.0个5、(4分)若解关于x的方程有增根,则m的值为()A.﹣5 B.5 C.﹣2 D.任意实数6、(4分)一名射击运动员连续打靶10次,命中的环数如图所示,这位运动员命中环数的众数与中位数分别为()A.7与7 B.7与7.5 C.8与7.5 D.8与77、(4分)关于x的分式方程有增根,则a的值为()A.2 B.3 C.4 D.58、(4分)下列图形中既是轴对称图形又是中心对称图形的是().A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,一棵大树在离地面4米高的处折断,树顶落在离树底端的5米远处,则大树折断前的高度是______米(结果保留根号).10、(4分)如图,等腰中,,,线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于______.11、(4分)如图是甲、乙两名射由运动员的10次射击训练成绩的折线统计图观察图形,比较甲、乙这10次射击成绩的方差S甲2、S乙2的大小:S甲2____S乙2(填“>”、“<”或“=”)12、(4分)计算−的结果为______13、(4分)甲、乙两个班级各20名男生测试“引体向上”,成绩如下图所示:设甲、乙两个班级男生“引体向上”个数的方差分别为S2甲和S2乙,则S2甲____S2乙.(填“>”,“<”或“=”)三、解答题(本大题共5个小题,共48分)14、(12分)如图,在矩形中,,,点从点出发向点运动,运动到点停止,同时,点从点出发向点运动,运动到点即停止,点、的速度都是每秒1个单位,连接、、.设点、运动的时间为秒(1)当为何值时,四边形是矩形;(2)当时,判断四边形的形状,并说明理由;15、(8分)为了迎接“五·一”小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价180元,售价320元;乙种服装每件进价150元,售价280元.(1)若该专卖店同时购进甲、乙两种服装共200件,恰好用去32400元,求购进甲、乙两种服装各多少件?(2)该专卖店为使甲、乙两种服装共200件的总利润(利润=售价一进价)不少于26700元,且不超过26800元,则该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备在5月1日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a(0<a<20)元出售,乙种服装价格不变.那么该专卖店要获得最大利润应如何进货?16、(8分)如图,在ABCD中,点E,F分别在BC,AD上,且BE=FD,求证:四边形AECF是平行四边形.17、(10分)如图,△ABC中,已知AB=AC,D是AC上的一点,CD=9,BC=15,BD=1.(1)判断△BCD的形状并证明你的结论.(2)求△ABC的面积.18、(10分)如图,在正方形ABCD中,点M在CD边上,点N在正方形ABCD外部,且满足∠CMN=90°,CM=MN.连接AN,CN,取AN的中点E,连接BE,AC,交于F点.(1)①依题意补全图形;②求证:BE⊥AC.(2)请探究线段BE,AD,CN所满足的等量关系,并证明你的结论.(3)设AB=1,若点M沿着线段CD从点C运动到点D,则在该运动过程中,线段EN所扫过的面积为______________(直接写出答案).B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若函数y=(m+1)x+(m2-1)(m为常数)是正比例函数,则m的值是____________。20、(4分)若分式的值为零,则x的值为______.21、(4分)如图,直线y=mx与双曲线y=交于A、B两点,D为x轴上一点,连接BD交y轴与点C,若C(0,-2)恰好为BD中点,且△ABD的面积为6,则B点坐标为__________.22、(4分)若是李华同学在求一组数据的方差时,写出的计算过程,则其中的=_____.23、(4分)如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2018BC和∠A2018CD的平分线交于点A2019,得∠A2019,则∠A2019=_____°.二、解答题(本大题共3个小题,共30分)24、(8分)计算:25、(10分)计算:9-7+5.26、(12分)如图,平面直角坐标系中,直线AB:y=-+b交y轴于点A(0,1),交x轴于点B,直线x=1交AB于点D,交x轴于点E,P是直线x=1上的一动点,且在点D的上方,设P(1,n).(1)求直线ABd解析式和点B的坐标;(2)求△ABP的面积(用含n的代数式表示);(3)当=2时,①求出点P的坐标;②在①的条件下,以PB为边在第一象限作等腰直角△BPC,直接写出点C的坐标.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

根据算术平方根定义、二次根式的加法、除法和二次根式的性质逐一计算即可得.【详解】解:A、=2,此选项错误;B、、不是同类二次根式,不能合并,此选项错误;C、=2÷=2,此选项正确;D、=2,此选项错误;故选:C.本题主要考查二次根式的混合运算,解题的关键是掌握算术平方根定义、二次根式的加法、除法和二次根式的性质.2、D【解析】

将x(x﹣2)=3代入原式=2x(x﹣2)﹣7,计算即可得到结论.【详解】当x(x﹣2)=3时,原式=2x(x﹣2)﹣7=2×3﹣7=6﹣7=﹣1.故选D.本题考查了代数式求值,解题的关键是掌握整体代入思想的运用.3、D【解析】

先因式分解,再约分即可得.【详解】故选D.本题主要考查约分,由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.4、A【解析】

两个数的平方相等,则两个数相等或互为相反数;两条直线平行,同位角相等;三角形面积相等,但不一定全等;根据三角形的外角性质得到三角形的一个外角等于与它不相邻的两个内角之和,根据以上结论判断即可.【详解】解:①、两个数的平方相等,则两个数相等或互为相反数,例如(-1)2=12,则-1≠1.故错误;

②、只有两直线平行时,同位角相等,故错误;

③、若两个三角形的面积相等,则两个三角形不一定全等.故错误;

④、三角形的一个外角等于与它不相邻的两个内角之和,故正确;

故选:A.本题主要考查平行线的性质,平方,全等三角形的判定,三角形的外角性质,命题与定理等知识点的理解和掌握,理解这些性质是解题的关键.5、A【解析】

增根是化为整式方程后产生的不适合分式方程的根所以应先确定增根的可能值,让最简公分母(x-1))=0,得到x=1,然后代入化为整式方程的方程算出m的值【详解】方程两边都乘(x﹣1),得x=3(x﹣1)﹣m,∵原方程有增根,∴最简公分母x﹣1=0,解得x=1,当x=1时,m=﹣1,故m的值是﹣1.故选:A.此题考查分式方程的增根,解题关键在于利用原方程有增根6、A【解析】

根据众数的定义找出出现次数最多的数;根据中位数的定义求出最中间两个数的平均数即可.【详解】解:根据统计图可得:7出现了4次,出现的次数最多,则众数是7;∵共有10个数,∴中位数是第5和6个数的平均数,∴中位数是(7+7)÷2=7;故选:A.此题考查了众数和中位数,用到的知识点是众数和中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数,注意众数不止一个.7、D【解析】

分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a的值.【详解】解:去分母得:x+1=a,

由分式方程有增根,得到x-4=0,即x=4,

代入整式方程得:a=5,

故选:D.此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.8、B【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;

B、是轴对称图形,也是中心对称图形,故此选项正确;

C、是轴对称图形,不是中心对称图形,故此选项错误;

D、不是轴对称图形,是中心对称图形,故此选项错误;

故选:B.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(本大题共5个小题,每小题4分,共20分)9、()【解析】

设出大树原来高度,用勾股定理建立方程求解即可.【详解】设这棵大树在折断之前的高度为x米,根据题意得:42+52=(x﹣4)2,∴x=4或x=40(舍),∴这棵大树在折断之前的高度为(4)米.故答案为:().本题是勾股定理的应用,解答本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.10、45°【解析】

由等腰△ABC中,AB=AC,∠A=30°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.【详解】∵等腰△ABC中,AB=AC,∠A=30°,∴∠ABC=(180°-30°)÷2=75°,∵DE是线段AB垂直平分线的交点,∴AE=BE,∠A=∠ABE=30°,∴∠CBE=∠ABC-∠ABE=75°-30°=45°.此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.11、<【解析】

利用折线统计图可判断乙运动员的成绩波动较大,然后根据方差的意义可得到甲乙的方差的大小.【详解】解:由折线统计图得乙运动员的成绩波动较大,所以S甲2<S乙2故选<本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.12、-1【解析】试题分析:由分式的加减运算法则可得:==-1考点:分式的运算点评:此题是简单题,分式的加减运算,分母相同的,分子直接相加减;分母不用的要先通分,然后再计算.13、<【解析】

分别求出甲、乙两个班级的成绩平均数,然后根据方差公式求方差作比较即可.【详解】解:甲班20名男生引体向上个数为5,6,7,8的人数都是5,乙班20名男生引体向上个数为5和8的人数都是6个,个数为6和7的人数都是4个,∴甲班20名男生引体向上的平均数=,乙班20名男生引体向上的平均数=,∴,,∴,故答案为:<.本题考查了方差的计算,熟练掌握方差公式是解题关键.三、解答题(本大题共5个小题,共48分)14、(1);(2)当时,四边形为菱形,理由见解析.【解析】

(1)由矩形性质得出,,由已知可得,,,当时,四边形为矩形,得出方程,解方程即可;(2)时,,,得出,,,,四边形为平行四边形,在中,与勾股定理求出,得出,即可得出结论.【详解】解:(1)在矩形中,,,,,由已知可得,,,在矩形中,,,当时,四边形为矩形,,解得:,当时,四边形为矩形;(2)四边形为菱形;理由如下:,,,,,,,四边形为平行四边形,在中,,,平行四边形为菱形,当时,四边形为菱形;本题考查了矩形的判定与性质、菱形的判定、勾股定理、平行四边形的判定等知识;熟练掌握判定与性质是解题的关键.15、(1)购进甲、乙两种服装2件、1件(2)共有11种方案(3)购进甲种服装70件,乙种服装130件【解析】

(1)设购进甲种服装x件,则乙种服装是(200-x)件,根据两种服装共用去32400元,即可列出方程,从而求解.(2)设购进甲种服装y件,则乙种服装是(200-y)件,根据总利润(利润=售价-进价)不少于26700元,且不超过2620元,即可得到一个关于y的不等式组,解不等式组即可求得y的范围,再根据y是正整数整数即可求解.(3)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.【详解】解:(1)设购进甲种服装x件,则乙种服装是(200-x)件,根据题意得:12x+150(200-x)=32400,解得:x=2,200-x=200-2=1.∴购进甲、乙两种服装2件、1件.(2)设购进甲种服装y件,则乙种服装是(200-y)件,根据题意得:,解得:70≤y≤2.∵y是正整数,∴共有11种方案.(3)设总利润为W元,则W=(140-a)y+130(200-y),即w=(10-a)y+3.①当0<a<10时,10-a>0,W随y增大而增大,∴当y=2时,W有最大值,此时购进甲种服装2件,乙种服装1件.②当a=10时,(2)中所有方案获利相同,所以按哪种方案进货都可以.③当10<a<20时,10-a<0,W随y增大而减小,∴当y=70时,W有最大值,此时购进甲种服装70件,乙种服装130件.16、证明:在ABCD中,AD=BC且AD∥BC,∵BE=FD,∴AF=CE.∴四边形AECF是平行四边形【解析】试题分析:根据平行四边形的性质可得AF∥EC.AF=EC,然后根据平行四边形的定义即可证得.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E,F分别是BC,AD的中点,∴,,∴AF∥EC,AF=EC,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的性质与判定;熟练掌握平行四边形的性质,证出AF=EC是解决问题的关键.17、(1)见解析;(2)75【解析】

(1)利用勾股定理的逆定理即可直接证明△BCD是直角三角形;

(2)设AD=x,则AC=x+9,在直角△ABD中,利用勾股定理即可列出方程,解方程,即可求解.【详解】(1)∵CD=9,BD=1∴CD2+BD2=81+144=225∵BC=15∴BC2=225∴CD2+BD2=BC2∴△BCD是直角三角形(2)设AD=x,则AC=x+9∵AB=AC∴AB=x+9∵∠BDC=90°∴∠ADB=90°∴AB2=AD2+BD2即(x+9)2=x2+12解得:x=∴AC=+9=∴S△ABC=AC⋅BD==75故答案为:75本题考查了利用勾股定理解直角三角形及勾股定理的逆定理的应用,勾股定理是直角三角形的一个性质,勾股定理的逆定理是判定直角三角形的一种方法.18、(1)①补图见解析;②证明见解析;(2)2BE=AD+CN,证明见解析;(3).【解析】分析:(1)①依照题意补全图形即可;②连接CE,由正方形以及等腰直角三角形的性质可得出∠ACD=∠MCN=45°,从而得出∠ACN=90°,再根据直角三角形的性质以及点E为AN的中点即可得出AE=CE,由此即可得出B、E在线段AC的垂直平分线上,由此即可证得BE⊥AC;(2)BE=AD+CN.根据正方形的性质可得出BF=AD,再结合三角形的中位线性质可得出EF=CN,由线段间的关系即可证出结论;(3)找出EN所扫过的图形为四边形DFCN.根据正方形以及等腰直角三角形的性质可得出BD∥CN,由此得出四边形DFCN为梯形,再由AB=1,可算出线段CF、DF、CN的长度,利用梯形的面积公式即可得出结论.详解:(1)①依题意补全图形,如图1所示.②证明:连接CE,如图2所示.∵四边形ABCD是正方形,∴∠BCD=90°,AB=BC,∴∠ACB=∠ACD=∠BCD=45°,∵∠CMN=90°,CM=MN,∴∠MCN=45°,∴∠ACN=∠ACD+∠MCN=90°.∵在Rt△ACN中,点E是AN中点,∴AE=CE=AN.∵AE=CE,AB=CB,∴点B,E在AC的垂直平分线上,∴BE垂直平分AC,∴BE⊥AC.(2)BE=AD+CN.证明:∵AB=BC,∠ABE=∠CBE,∴AF=FC.∵点E是AN中点,∴AE=EN,∴FE是△ACN的中位线.∴FE=CN.∵BE⊥AC,∴∠BFC=90°,∴∠FBC+∠FCB=90°.∵∠FCB=45°,∴∠FBC=45°,∴∠FCB=∠FBC,∴BF=CF.在Rt△BCF中,BF2+CF2=BC2,∴BF=BC.∵四边形ABCD是正方形,∴BC=AD,∴BF=AD.∵BE=BF+FE,∴BE=AD+CN.(3)在点M沿着线段CD从点C运动到点D的过程中,线段EN所扫过的图形为四边形DFCN.∵∠BDC=45°,∠DCN=45°,∴BD∥CN,∴四边形DFCN为梯形.∵AB=1,∴CF=DF=BD=,CN=CD=,∴S梯形DFCN=(DF+CN)•CF=(+)×=.点睛:本题考查了正方形的性质、等腰直角三角形的性质、平行线的性质以及梯形的面积公式,解题的关键是:(1)根据垂直平分线上点的性质证出垂直;(2)用AD表示出EF、BF的长度;(3)找出EN所扫过的图形.本题属于中档题,难度不小,解决该题型题目时,根据题意画出图形,利用数形结合解决问题是关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、2【解析】

根据正比例函数的定义列出方程m2-2=2且m+2≠2,依此求得m值即可.【详解】解:依题意得:m2-2=2且m+2≠2.解得m=2,故答案是:2.本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠2,自变量次数为2.20、-1【解析】

试题分析:因为当时分式的值为零,解得且,所以x=-1.考点:分式的值为零的条件.21、(,-4)【解析】

设点B坐标为(a,b),由点C(0,-2)是BD中点可得b=-4,D(-a,0),根据反比例函数的对称性质可得A(-a,4),根据A、D两点坐标可得AD⊥x轴,根据△ABD的面积公式列方程可求出a值,即可得点B坐标.【详解】设点B坐标为(a,b),∵点C(0,-2)是BD中点,点D在x轴上,∴b=-4,D(-a,0),∵直线y=mx与双曲线y=交于A、B两点,∴A(-a,4),∴AD⊥x轴,AD=4,∵△ABD的面积为6,∴S△ABD=AD×2a=6∴a=,∴点B坐标为(,-4)本题考查反比例函数的性质,反比例函数图象是以原点为对称中心的双曲线,根据反比例函数的对称性表示出A点坐标是解题关键.22、1【解析】

一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,所以其中的是、、、的平均数,据此求解即可.【详解】解:,

是、、、的平均数,

故答案为:1.此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.23、【解析】

根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,然后整理得到∠A1=∠A;【详解】∵∠ABC与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,由三角形的外角性质,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,(∠A+∠ABC)=∠A1+∠A1BC=∠A1+∠ABC,整理得,∠A1=∠A=×m°=°;同理可得∠An=()n×m,所以∠A2019=()2019×m=.故答案是:.考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质与定义并求出后一个角是前一个角的是解题的关键.二、解答题(本大题共3个小题,共30分)24、【解析】

先把二次根式化简,然后合并同类二次根式,再做乘法并化简求得结果。【详解】解:原式本题考查了二次根式的混合运算,熟练掌握计算法则是关键。25、15【解析】

先化简再计算,,,代入原式即可得出结果;【详解】解:原式,.本题主要考查了二次根式的加减运算,无理数的运算法则与有理数的运算法则是一样的.在进行根式的运算时要先化简再计算可使计算简便.26、(1)y=-x+1,点B(3,0);(2)n-1;(3)①P(1,2);②(3,4)或(5,2)或(3,2).【解析】

(1)将点A的坐标代入直线AB的解析式可求得b值,可得AB的解析式,继而令y=0,求得相应的x值即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论