甘肃省天水市麦积区向荣中学2024-2025学年数学九上开学质量跟踪监视试题【含答案】_第1页
甘肃省天水市麦积区向荣中学2024-2025学年数学九上开学质量跟踪监视试题【含答案】_第2页
甘肃省天水市麦积区向荣中学2024-2025学年数学九上开学质量跟踪监视试题【含答案】_第3页
甘肃省天水市麦积区向荣中学2024-2025学年数学九上开学质量跟踪监视试题【含答案】_第4页
甘肃省天水市麦积区向荣中学2024-2025学年数学九上开学质量跟踪监视试题【含答案】_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页甘肃省天水市麦积区向荣中学2024-2025学年数学九上开学质量跟踪监视试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能是()A.3.5 B.4.2 C.5.8 D.72、(4分)直线y=kx+b不经过第三象限,则k、b应满足()A.k>0,b<0B.k<0,b>0C.k<0b<0D.k<0,b≥03、(4分)反比例函数y=(2m-1),当x>0时,y随x的增大而增大,则m的值是()A.m=±1 B.小于的实数 C.-1 D.14、(4分)当1<a<2时,代数式+|1-a|的值是()A.-1 B.1 C.2a-3 D.3-2a5、(4分)如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,则∠A的度数为()A.70° B.75° C.60° D.65°6、(4分)已知函数的图象经过原点,则的值为()A. B. C. D.7、(4分)如图,已知△ABC为直角三角形,∠B=90°,若沿图中虚线剪去∠B,则∠1+∠2=()A.90° B.135° C.270° D.315°8、(4分)如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)高6cm的旗杆在水平面上的影长为8cm,此时测得一建筑物的影长为28cm,则该建筑物的高为______.10、(4分)若是关于的一元二次方程的一个根,则____.11、(4分)如图,直线y=-x+4分别与x轴,y轴交于点A,B,点C在直线AB上,D是y轴右侧平面内一点,若以点O,A,C,D为顶点的四边形是菱形,则点D的坐标是_______________.12、(4分)如图,已知矩形ABCD中,对角线AC、BD相交于O,AE⊥BD于E,若AB=6,AD=8,则AE=______13、(4分)如图,平分,,,则______.三、解答题(本大题共5个小题,共48分)14、(12分)“书香校园”活动中,某校同时购买了甲、乙两种图书,已知两种图书的购书款均为360元,甲种图书的单价比乙种图书低50%,甲种图书比乙种图书多4本,甲、乙两种图书的单价分别为多少元?15、(8分)探究:如图1,在△ABC中,AB=AC,CF为AB边上的高,点P为BC边上任意一点,PD⊥AB,PE⊥AC,垂足分别为点D,E.求证:PD+PE=CF.嘉嘉的证明思路:连结AP,借助△ABP与△ACP的面积和等于△ABC的面积来证明结论.淇淇的证明思路:过点P作PG⊥CF于G,可证得PD=GF,PE=CG,则PD+PE=CF.迁移:请参考嘉嘉或淇淇的证明思路,完成下面的问题:(1)如图1.当点P在BC延长线上时,其余条件不变,上面的结论还成立吗?若不成立,又存在怎样的关系?请说明理由;(1)当点P在CB延长线上时,其余条件不变,请直接写出线段PD,PE和CF之间的数量关系.运用:如图3,将矩形ABCD沿EF折叠,使点D落在点B处,点C落在点C′处.若点P为折痕EF上任一点,PG⊥BE于G,PH⊥BC于H,若AD=18,CF=5,直接写出PG+PH的值.16、(8分)如图,已知G、H是△ABC的边AC的三等分点,GE∥BH,交AB于点E,HF∥BG交BC于点F,延长EG、FH交于点D,连接AD、DC,设AC和BD交于点O,求证:四边形ABCD是平行四边形.17、(10分)如图,已知双曲线,经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.18、(10分)计算:(小题1)解不等式组B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)一个等腰三角形一边长为2,另一边长为5,这个三角形第三边的长是_________20、(4分)若一个多边形的内角和与外角和之和是900°,则该多边形的边数是_____.21、(4分)在式子中,x的取值范围是__________________.22、(4分)二次根式的值是________.23、(4分)函数自变量的取值范围是______.二、解答题(本大题共3个小题,共30分)24、(8分)(1)解方程:x2x-3+53-2x(2)解不等式组并把解集表示在数轴上:3x-1225、(10分)计算:(212-13)×26、(12分)(1)化简:.(2)若(1)中的值是不等式“”的一个负整数解,请你在其中选一个你喜欢的数代入(1)中求值.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

解:根据垂线段最短,可知AP的长不可小于3∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=1,∴AP的长不能大于1.∴故选D.2、D.【解析】试题解析:∵直线y=kx+b不经过第三象限,∴y=kx+b的图象经过第一、二、四象限或第二,四象限,∵直线必经过二、四象限,∴k<1.当图象过一、二四象限,直线与y轴正半轴相交时:b>1.当图象过原点时:b=1,∴b≥1,故选D.考点:一次函数图象与系数的关系.3、C【解析】

根据反比例函数的定义列出方程:m2−2=−1求解,再根据它的性质列出不等式:2m−1<0决定解的取舍.【详解】根据题意,m2−2=−1,解得m=±1,又∵2m−1≠0,∴m≠,∵y随x的增大而增大,2m−1<0,得m<,∴m=−1.故选C.本题考查反比例函数的性质,反比例函数的定义.根据反比例函数自变量x的次数为-1.k>0时,在各自象限y随x的增大而减小;k<0时,在各自象限y随x的增大而增大.4、B【解析】

解:∵1<a<2,∴=|a-2|=-(a-2),|1-a|=a-1,∴+|1-a|=-(a-2)+(a-1)=2-1=1.故选B.5、B【解析】

由旋转的性质知∠AOD=30°,OA=OD,根据等腰三角形的性质及内角和定理可得答案.【详解】由题意得:∠AOD=30°,OA=OD,∴∠A=∠ADO75°.故选B.本题考查了旋转的性质,熟练掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等是解题的关键.6、B【解析】

根据已知条件知,关于x的一次函数y=2x+m-1的图象经过点(0,0),所以把(0,0)代入已知函数解析式列出关于系数m的方程,通过解方程即可求得m的值.【详解】解:∵关于x的一次函数y=2x+m-1的图象经过原点,

∴点(0,0)满足一次函数的解析式y=2x+m-1,

∴0=m-1,

解得m=1.

故选:B.本题考查一次函数图象上点的坐标特点,熟知一次函数y=kx+b(k≠0)中,当b=0时函数图象经过原点是解题的关键.7、C【解析】

如图,根据题意可知∠1=90°+∠BNM,∠2=90°+∠BMN,然后结合三角形内角和定理即可推出∠1+∠2的度数.【详解】解:∵△ABC为直角三角形,∠B=90°∴∠1=90°+∠BNM,∠2=90°+∠BMN,∠BMN+∠BNM=90°,

∴∠1+∠2=270°.

故选C.本题考查三角形的外角性质、三角形内角和定理,直角三角形的性质,解题的关键在于求证∠1=90°+∠BNM,∠2=90°+∠BMN.8、C【解析】

由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.二、填空题(本大题共5个小题,每小题4分,共20分)9、21【解析】【分析】设建筑物高为hm,依题意得.【详解】设建筑物高为hm,依题意得解得,h=21故答案为21【点睛】本题考核知识点:成比例性质.解题关键点:理解同一时刻,物高和影长成比例.10、0【解析】

根据一元二次方程的解即可计算求解.【详解】把x=-2代入方程得,解得k=1或0,∵k2-1≠0,k≠±1,∴k=0此题主要考查一元二次方程的解,解题的关键是熟知一元二次方程二次项系数不为0.11、(2,−2)或(6,2).【解析】

设点C的坐标为(x,-x+4).分两种情况,分别以C在x轴的上方、C在x轴的下方做菱形,画出图形,根据菱形的性质找出点C的坐标即可得出D点的坐标.【详解】∵一次函数解析式为线y=-x+4,令x=0,解得y=4∴B(0,4),令y=0,解得x=4∴A(4,0),如图一,∵四边形OADC是菱形,设C(x,-x+4),∴OC=OA=,整理得:x2−6x+8=0,解得x1=2,x2=4,∴C(2,2),∴D(6,2);如图二、如图三,∵四边形OADC是菱形,设C(x,-x+4),∴AC=OA=,整理得:x2−8x+12=0,解得x1=2,x2=6,∴C(6,−2)或(2,2)∴D(2,−2)或(−2,2)∵D是y轴右侧平面内一点,故(−2,2)不符合题意,故答案为(2,−2)或(6,2).本题考查了一次函数图象上点的坐标特征以及菱形的性质,解题的关键是确定点C、D的位置.本题属于中档题,难度不大,在考虑菱形时需要分类讨论.12、4.8.【解析】

矩形各内角为直角,在直角△ABD中,已知AB、AD,根据勾股定理即可求BD的值,根据面积法即可计算AE的长.【详解】矩形各内角为直角,∴△ABD为直角三角形在直角△ABD中,AB=6,AD=8则BD==10,∵△ABD的面积S=AB⋅AD=BD⋅AE,∴AE==4.8.故答案为4.8.此题考查矩形的性质,解题关键在于运用勾股定理进行计算13、50【解析】

由平分,可求出∠BDE的度数,根据平行线的性质可得∠ABD=∠BDE.【详解】解:∵,∴∠ADE=180°-80°=100°,∵平分,∴∠BDE=∠ADE=50°,∵,∴∠ABD=∠BDE=50°.故答案为:50.本题考查平行线的性质与角平分线的定义.此题比较简单,解题的关键是注意掌握两直线平行,内错角相等定理的应用,注意数形结合思想的应用.三、解答题(本大题共5个小题,共48分)14、甲种图书的单价为每本45元,乙种图书的单价为每本90元【解析】

设乙种图书的单价是每本x元,则甲种图书的单价是每本0.5x元,根据题意列出分式方程,解之经检验后即可得出结论.【详解】设乙种图书的单价是每本x元,则甲种图书的单价是每本0.5x元根据题意得:解得:x=90经检验:x=90是分式方程的解答:甲种图书的单价为每本45元,乙种图书的单价为每本90元.本题考查了分式方程的应用,解题的关键是找准等量关系,列出分式方程.15、(1)不成立,CF=PD-PE,理由见解析;(1)CF=PE-PD理由见解析;运用:PG+PH的值为11.【解析】

(1)由三角形的面积和差关系可求解;(1)由三角形的面积和差关系可求解;(3)易证BE=BF,过点E作EQ⊥BF,垂足为Q,利用探究中的结论可得PG+PH=EQ,易证EQ=AB,BF=BE=DE=3,只需求出AB即可.【详解】解:(1)不成立,CF=PD-PE理由如下:连接AP,如图,∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ABP-S△ACP,∴AB•CF=AB•PD-AC•PE.∵AB=AC,∴CF=PD-PE.(1)CF=PE-PD理由如下:如图,∵S△ABC=S△ACP-S△ABP,∴AB•CF=AC•PE-AB•PD∵AB=AC∴CF=PE-PD运用:过点E作EQ⊥BC,垂足为Q,如图,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠A=∠ABC=90°.∵AD=18,CF=5,∴BF=BC-CF=AD-CF=3.由折叠可得:DE=BB,∠BEF=∠DEF.∵AD∥BC∴∠DEF=∠EFB∴∠BEF=∠BFE∴BE=BF=3=DE∴AE=5∵∠A=90°,∴AB==11∵EQ⊥BC,∠A=∠ABC=90°.∴∠EQC=90°=∠A=∠ABC∴四边形EQBA是矩形.∴EQ=AB=11.由探究的结论可得:PG+PH=EQ.∴PG+PH=11.∴PG+PH的值为11.故答案为:(1)不成立,CF=PD-PE,理由见解析;(1)CF=PE-PD理由见解析;运用:PG+PH的值为11.本题考查矩形的性质与判定、等腰三角形的性质与判定、全等三角形的性质与判定、直角三角形斜边上的中线等于斜边的一半、勾股定理等知识,考查了用面积法证明几何问题,考查了运用已有的经验解决问题的能力,体现了自主探究与合作交流的新理念,是充分体现新课程理念难得的好题.16、证明见解析.【解析】分析:根据题意得出EG、FH分别是△ABH和△CBG的中位线,从而得出ED∥BH,FD∥BG,即四边形BHDG是平行四边形,从而得出OB=OD,OG=OH,结合AG=CH得出OA=OC,从而根据对角线互相平分的四边形是平行四边形得出答案.详解:证明:∵G、H是AC的三等分点且GE∥BH,HF∥BG,∴AG=GH=HC,EG、FH分别是△ABH和△CBG的中位线,∴ED∥BH,FD∥BG,∴四边形BHDG是平行四边形,∴OB=OD,OG=OH,OA=OG+AG=OH+CH=OC,∴四边形ABCD是平行四边形.点睛:本题主要考查的是平行四边形的性质与判定,属于中等难度的题型.根据中位线的性质得出四边形BHDG是平行四边形是解决这个问题的关键.17、(1)k=6;(2)直线CD的解析式为;(3)AB∥CD,理由见解析.【解析】

(1)把点D的坐标代入双曲线解析式,进行计算即可得解.(2)先根据点D的坐标求出BD的长度,再根据三角形的面积公式求出点C到BD的距离,然后求出点C的纵坐标,再代入反比例函数解析式求出点C的坐标,然后利用待定系数法求一次函数解析式解答.(3)根据题意求出点A、B的坐标,然后利用待定系数法求出直线AB的解析式,可知与直线CD的解析式k值相等,所以AB、CD平行.【详解】解:(1)∵双曲线经过点D(6,1),∴,解得k=6.(2)设点C到BD的距离为h,∵点D的坐标为(6,1),DB⊥y轴,∴BD=6,∴S△BCD=×6•h=12,解得h=4.∵点C是双曲线第三象限上的动点,点D的纵坐标为1,∴点C的纵坐标为1-4=-3.∴,解得x=-2.∴点C的坐标为(-2,-3).设直线CD的解析式为y=kx+b,则,解得.∴直线CD的解析式为.(3)AB∥CD.理由如下:∵CA⊥x轴,DB⊥y轴,点C的坐标为(-2,-3),点D的坐标为(6,1),∴点A、B的坐标分别为A(-2,0),B(0,1).设直线AB的解析式为y=mx+n,则,解得.∴直线AB的解析式为.∵AB、CD的解析式k都等于相等.∴AB与CD的位置关系是AB∥CD.18、-2<x≤-6【解析】

解不等式(1)得:x-6≥2xx-2x≥6-x≥6x≤-6解不等式(2)得:1-3x+3<8-x-3x+x<8-1-3-2x<4x>-2∴这个不等式的解是-2<x≤-6一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】解:分两种情况:当腰为2时,2+2<1,所以不能构成三角形;当腰为1时,2+1>1,所以能构成三角形,所以这个三角形第三边的长是1.故答案为:1.点睛:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.20、1【解析】

先根据已知条件以及多边形的外角和是360°,解出内角和的度数,再根据内角和度数的计算公式即可求出边数.【详解】解:∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,∴多边形的内角和是900﹣360=140°,∴多边形的边数是:140°÷180°+2=3+2=1.故答案为:1.本题主要考查多边形的内角和定理及多边形的外角和定理,熟练掌握多边形内角和定理是解答本题的关键.n边形的内角和为:(n-2)×180°,n边形的外角和为:360°.21、x≥2【解析】分析:根据被开方式是非负数列不等式求解即可.详解:由题意得,x-2≥0,x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论