版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省屏边县第一中学2025届数学高二上期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线的一个法向量为()A. B.C. D.2.已知数列满足,则满足的的最大取值为()A.6 B.7C.8 D.93.已知椭圆的离心率为,双曲线的离心率为,则()A. B.C. D.4.若等差数列,其前n项和为,,,则()A.10 B.12C.14 D.165.记为等差数列的前项和.若,,则的公差为()A.1 B.2C.4 D.86.已知圆C的圆心在直线上,且与直线相切于点,则圆C方程为()A. B.C. D.7.在平行六面体中,点P在上,若,则()A. B.C. D.8.已知椭圆上的一点到椭圆一个焦点的距离为3,则点到另一焦点的距离为()A.1 B.3C.5 D.79.双曲线的离心率是,则双曲线的渐近线方程是()A. B.C. D.10.箱子中有5件产品,其中有2件次品,从中随机抽取2件产品,设事件=“至少有一件次品”,则的对立事件为()A.至多两件次品 B.至多一件次品C.没有次品 D.至少一件次品11.已知数列中,,(),则等于()A. B.C. D.212.已知是抛物线上的点,F是抛物线C的焦点,若,则()A.1011 B.2020C.2021 D.2022二、填空题:本题共4小题,每小题5分,共20分。13.已知,是椭圆:的两个焦点,点在上,则的最大值为________14.已知数列前项和为,且,则_______.15.一个六棱锥的体积为,其底面是边长为的正六边形,侧棱长都相等,则该六棱锥的侧面积为.16.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现同时从甲、乙两口袋中各任取一个球交换放入对方口袋,共进行了2次这样的操作后,甲口袋中恰有2个黑球的概率为__________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线:的焦点为,点在上,点在的内侧,且的最小值为.(1)求的方程;(2)为坐标原点,点A在y轴正半轴上,点B,C为E上两个不同的点,其中B点在第四象限,且AB,互相垂直平分,求四边形AOBC的面积.18.(12分)在等比数列中,已知,(1)若,求数列的前项和;(2)若以数列中的相邻两项,构造双曲线,求证:双曲线系中所有双曲线的渐近线、离心率都相同19.(12分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和(Ⅰ)求k的值及f(x)的表达式(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值20.(12分)已知抛物线过点,O为坐标原点(1)求焦点的坐标及其准线方程;(2)抛物线C在点A处的切线记为l,过点A作与切线l垂直的直线,与抛物线C的另一个交点记为B,求的面积21.(12分)已知椭圆.离心率为,点与椭圆的左、右顶点可以构成等腰直角三角形(1)求椭圆的方程;(2)若直线与椭圆交于两点,为坐标原点直线的斜率之积等于,试探求的面积是否为定值,并说明理由22.(10分)如图,正方体的棱长为,分别是的中点,点在棱上,().(Ⅰ)三棱锥的体积分别为,当为何值时,最大?最大值为多少?(Ⅱ)若平面,证明:平面平面.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】直线化为,求出直线的方向向量,因为法向量与方向向量垂直,逐项验证可得答案.【详解】直线的方向向量为,化为,直线的方向向量为,因为法向量与方向向量垂直,设法向量为,所以,由于,A错误;,故B正确;,故C错误;,故D错误;故选:B.2、B【解析】首先地推公式变形,得,,求得数列的通项公式后,再解不等式.【详解】因为,两边取倒数,得,整理为:,,所以数列是首项为1,公差为4的等差数列,,,因为,即,得,解得:,,所以的最大值是7.故选:B3、D【解析】根据给定的方程求出离心率,的表达式,再计算判断作答.【详解】因椭圆的离心率为,则有,因双曲线的离心率为,则有,所以.故选:D4、B【解析】由等差数列前项和的性质计算即可.【详解】由等差数列前项和的性质可得成等差数列,,即,得.故选:B.5、C【解析】根据等差数列的通项公式及前项和公式利用条件,列出关于与的方程组,通过解方程组求数列的公差.【详解】设等差数列的公差为,则,,联立,解得.故选:C.6、C【解析】设出圆心坐标,根据垂直直线的斜率关系求得圆心坐标,结合两点距离公式得半径,即可得圆方程【详解】设圆心为,则圆心与点的连线与直线l垂直,即,则点,所以圆心为,半径,所以方程为,故选:C7、C【解析】利用空间向量基本定理,结合空间向量加法的法则进行求解即可.【详解】因为,,所以有,因此,故选:C8、D【解析】由椭圆的定义可以直接求得点到另一焦点的距离.【详解】设椭圆的左、右焦点分别为、,由已知条件得,由椭圆定义得,其中,则.故选:.9、B【解析】利用双曲线的离心率,以及渐近线中,关系,结合找关系即可【详解】解:,又因为在双曲线中,,所以,故,所以双曲线的渐近线方程为,故选:B10、C【解析】利用对立事件的定义,分析即得解【详解】箱子中有5件产品,其中有2件次品,从中随机抽取2件产品,可能出现:“两件次品”,“一件次品,一件正品”,“两件正品”三种情况根据对立事件的定义,事件=“至少有一件次品”其对立事件为:“两件正品”,即”没有次品“故选:C11、D【解析】由已知条件可得,,…,即是周期为3的数列,即可求.【详解】由题设,知:,,,…,∴是周期为3的数列,而的余数为1,∴.故选:D.12、C【解析】结合向量坐标运算以及抛物线的定义求得正确答案.【详解】设,因为是抛物线上的点,F是抛物线C的焦点,所以,准线为:,因此,所以,即,由抛物线的定义可得,所以故选:C二、填空题:本题共4小题,每小题5分,共20分。13、9【解析】根据椭圆的定义可得,结合基本不等式即可求得的最大值.【详解】∵在椭圆上∴∴根据基本不等式可得,即,当且仅当时取等号.故答案为:9.14、,.【解析】由的递推关系,讨论、求及,注意验证是否满足通项,即可写出的通项公式.【详解】当时,,当且时,,而,即也满足,∴,.故答案为:,.15、【解析】判断棱锥是正六棱锥,利用体积求出棱锥的高,然后求出斜高,即可求解侧面积∵一个六棱锥的体积为,其底面是边长为2的正六边形,侧棱长都相等,∴棱锥是正六棱锥,设棱锥的高为h,则棱锥斜高为该六棱锥的侧面积为考点:棱柱、棱锥、棱台的体积16、【解析】分两类:两次都互相交换白球的概率和第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率求和可得答案.【详解】分两类:①两次都互相交换白球的概率为;②第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据题意,结合抛物线定义,可求得,即得抛物线方程;(2)由题意推出四边形AOBC是菱形.,设,根据抛物线的对称性,可表示出B,C的坐标,从而利用向量的坐标运算,求得所设参数值,进而求得答案.【小问1详解】的准线为:,作于R,根据抛物线的定义有,所以,因为在的内侧,所以当P,Q,R三点共线时,取得最小值,此时,解得,所以的方程为.小问2详解】因为AB,OC互相垂直平分,所以四边形AOBC是菱形.由,得轴,设点,则,由抛物线的对称性知,,,.由,得,解得,所以在菱形中,,边上的高,所以菱形的面积.18、(1);(2)证明过程见解析.【解析】(1)根据等比数列的通项公式,结合对数的运算性质、等比数列和等差数列前项和公式进行求解即可;(2)根据等比数列的通项公式,结合双曲线渐近线方程和离心率公式进行证明即可.【小问1详解】设等比数列的公比为,因为,所以,因此,所以,所以;【小问2详解】由(1)知,在双曲线中,,所以得,因此双曲线的渐近线方程为:,双曲线的离心率为:,所以双曲线系中所有双曲线的渐近线、离心率都相同.19、,因此.,当隔热层修建厚时,总费用达到最小值70万元【解析】解:(Ⅰ)设隔热层厚度为,由题设,每年能源消耗费用为.再由,得,因此.而建造费用为最后得隔热层建造费用与20年的能源消耗费用之和为(Ⅱ),令,即.解得,(舍去)当时,,当时,,故是的最小值点,对应的最小值为当隔热层修建厚时,总费用达到最小值为70万元20、(1)焦点,准线方程;(2)12.【解析】(1)将点A坐标代入求出,写出抛物线方程即可作答.(2)由(1)的结论求出切线l的斜率,进而求得直线AB方程,联立直线AB与抛物线C的方程,求出弦AB长及点O到直线AB距离计算作答.【小问1详解】依题意,,解得,则抛物线的方程为:,所以抛物线的焦点,准线方程为.【小问2详解】显然切线l的斜率存在,设切线l的方程为:,由消去x并整理得:,依题意得,解得,因直线,则直线AB的斜率为-1,方程为:,即,由消去x并整理得:,解得,因此有,而,则,而点到直线AB:的距离,则,所以的面积是12.21、(1);(2)是定值,理由见解析.【解析】(1)由题意有,点与椭圆的左、右顶点可以构成等腰直角三角形有,即可写出椭圆方程;(2)直线与椭圆交于两点,联立方程结合韦达定理即有,已知应用点线距离公式、三角形面积公式即可说明的面积是否为定值;【详解】(1)椭圆离心率为,即,∵点与椭圆的左、右顶点可以构成等腰直角三角形,∴,综上有:,,故椭圆方程为,(2)由直线与椭圆交于两点,联立方程:,整理得,设,则,,,,原点到的距离,为定值;【点睛】本题考查了由离心率求椭圆方程,根据直线与椭圆的相交关系证明交点与原点构成的三角形面积是否为定值的问题.22、(Ⅰ),.(Ⅱ)见解析.【解析】(Ⅰ)由题可知,,由和,结合基本不等式可求最值;(Ⅱ)连接交于点,则为的中点,可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国美式垃圾桶数据监测研究报告
- 2024至2030年益脉康胶囊项目投资价值分析报告
- 2024至2030年透明红色母项目投资价值分析报告
- 2024至2030年维纶子口布项目投资价值分析报告
- 2024至2030年数学学具盒项目投资价值分析报告
- 2024至2030年六角钻尾螺丝项目投资价值分析报告
- 2024年浴室家私项目可行性研究报告
- 技术开发合同补充协议
- 2024年光刻胶树脂项目申请报告的范文
- 2024年计划生育技术服务项目立项申请报告
- 徐州市铜山区事业单位招聘工作人员笔试真题2023
- 《透镜及其应用复习》课件
- 2024-2030年中国城市环卫行业发展现状分析及投资规模研究报告
- 医科大学2024年12月新药研究与开发本科作业考核试题答卷
- 《小水电生态流量泄放设施改造及监测技术导则》
- 综合智慧零碳园区项目可行性研究报告写作模板-备案审批
- 国开2024年秋《生产与运作管理》形成性考核1-4答案
- 2023装配式建筑标准化产品系列图集(预制内墙条板)SJT 03-2023
- 祭宅保平安文书
- 武当太极剑(49式)图谱拳谱
- 公司员工合理化建议奖励办法(最新整理)
评论
0/150
提交评论