宁夏银川市兴庆区一中2025届数学高二上期末预测试题含解析_第1页
宁夏银川市兴庆区一中2025届数学高二上期末预测试题含解析_第2页
宁夏银川市兴庆区一中2025届数学高二上期末预测试题含解析_第3页
宁夏银川市兴庆区一中2025届数学高二上期末预测试题含解析_第4页
宁夏银川市兴庆区一中2025届数学高二上期末预测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宁夏银川市兴庆区一中2025届数学高二上期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.棱长为1的正四面体的表面积是()A. B.C. D.2.已知函数,则的单调递增区间为().A. B.C. D.3.已知等比数列满足,则q=()A.1 B.-1C.3 D.-34.已知p、q是两个命题,若“(¬p)∨q”是假命题,则()A.p、q都是假命题 B.p、q都是真命题C.p是假命题q是真命题 D.p是真命题q是假命题5.已知四棱柱ABCD-A1B1C1D1的底面是边长为2的正方形,侧棱与底面垂直,若点C到平面AB1D1的距离为,则直线与平面所成角的余弦值为()A. B.C. D.6.鲁班锁运用了中国古代建筑中首创的榫卯结构,相传由春秋时代各国工匠鲁班所作,是由六根内部有槽的长方形木条,按横竖立三方向各两根凹凸相对咬合一起,形成的一个内部卯榫的结构体.鲁班锁的种类各式各样,千奇百怪.其中以最常见的六根和九根的鲁班锁最为著名.下图1是经典的六根鲁班锁及六个构件的图片,下图2是其中的一个构件的三视图(图中单位:mm),则此构件的表面积为()A. B.C. D.7.已知某班有学生48人,为了解该班学生视力情况,现将所有学生随机编号,用系统抽样的方法抽取一个容量为4的样本已知3号,15号,39号学生在样本中,则样本中另外一个学生的编号是()A.26 B.27C.28 D.298.在抛物线上,横坐标为4的点到焦点的距离为5,则p的值为()A. B.2C.1 D.49.圆与圆的位置关系为()A.外切 B.内切C.相交 D.相离10.已知不等式解集为,下列结论正确的是()A. B.C D.11.执行如图所示的程序框图,如果输入,那么输出的a值为()A.3 B.27C.-9 D.912.抛物线的焦点到准线的距离()A.4 B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.写出同时满足以下三个条件的数列的一个通项公式______.①不是等差数列,②是等比数列,③是递增数列14.已知四面体中,,分别在,上,且,,若,则________.15.已知数列的前项和为,且,若点在直线上,则______;______.16.若实数x,y满足约束条件,则的最大值是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆.(1)求过点M(2,1)的圆的切线方程;(2)直线过点且被圆截得的弦长为2,求直线的方程;(3)已知圆的圆心在直线y=1上,与y轴相切,且与圆相外切,求圆的标准方程.18.(12分)已知椭圆的离心率为,长轴长为,F为椭圆的右焦点(1)求椭圆C的方程;(2)经过点的直线与椭圆C交于两点,,且以为直径的圆经过原点,求直线的斜率;(3)点是以长轴为直径的圆上一点,圆在点处的切线交直线于点,求证:过点且垂直于的直线过定点19.(12分)已知椭圆的右焦点为,短轴长为4,设,的左右有两个焦点求椭圆C的方程;若P是该椭圆上的一个动点,求的取值范围;是否存在过点的直线l与椭圆交于不同的两点C,D,使得?若存在,求出直线l的方程;若不存在,请说明两点20.(12分)如图,在长方体中,,,是棱的中点(1)求证:;(2)求平面与平面夹角的余弦值;(3)在棱上是否存在一点,使得与平面所成角的正弦值为,若存在,求出的长;若不存在,请说明理由21.(12分)某港口船舶停靠的方案是先到先停,且每次只能停靠一艘船.(1)若甲乙两艘船同时到达港口,双方约定各派一名代表猜拳:从1,2,3,4,5中各随机选一个数,若两数之和为奇数,则甲先停靠;若两数之和为偶数,则乙先停靠,这种方式对双方是否公平?请说明理由;(2)若甲、乙两船在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1h,乙船停泊时间为2h,求它们中的任意一艘都不需要等待码头空出的概率.22.(10分)已知函数f(x)+alnx,实数a>0(1)当a=2时,求函数f(x)在x=1处的切线方程;(2)讨论函数f(x)在区间(0,10)上的单调性和极值情况;(3)若存在x∈(0,+∞),使得关于x的不等式f(x)<2+a2x成立,求实数a的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】采用数形结合,根据边长,结合正四面体的概念,计算出正三角形的面积,可得结果【详解】如图由正四面体的概念可知,其四个面均是全等的等边三角形,由其棱长为1,所以,所以可知:正四面体的表面积为,故选:D2、D【解析】利用导数分析函数单调性【详解】的定义域为,,令,解得故的单调递增区间为故选:D3、C【解析】根据已知条件,利用等比数列的基本量列出方程,即可求得结果.【详解】因为,故可得;解得.故选:C.4、D【解析】由已知可得¬p,q都是假命题,从而可分析判断各选项【详解】∵“(¬p)∨q”是假命题,∴¬p,q都是假命题,∴p真,q假,故选:D.5、A【解析】先由等面积法求得的长,再以为坐标原点,建立如图所示的空间直角坐标系,运用线面角的向量求解方法可得答案【详解】如图,连接交于点,过点作于,则平面,则,设,则,则根据三角形面积得,代入解得以为坐标原点,建立如图所示的空间直角坐标系则,,设平面的法向量为,,,则,即,令,得,所以直线与平面所成的角的余弦值为,故选:6、B【解析】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,进而求出表面积即可.【详解】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,如下图所示,其表面积为:.故选:B.【点睛】本题考查几何体的表面积的求法,考查三视图,考查学生的空间想象能力与计算求解能力,属于中档题.7、B【解析】由系统抽样可知抽取一个容量为4的样本时,将48人按顺序平均分为4组,由已知编号可得所求的学生来自第三组,设其编号为,则,进而求解即可【详解】由系统抽样可知,抽取一个容量为4的样本时,将48人分为4组,第一组编号为1号至12号;第二组编号为13号至24号;第三组编号为25号至36号;第四组编号为37号至48号,故所求的学生来自第三组,设其编号为,则,所以,故选:B【点睛】本题考查系统抽样的编号,属于基础题8、B【解析】由方程可得抛物线的焦点和准线,进而由抛物线的定义可得,解之可得值【详解】解:由题意可得抛物线开口向右,焦点坐标,,准线方程,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即,解之可得.故选:B.9、A【解析】根据两圆半径和、差、圆心距之间的大小关系进行判断即可.【详解】由,该圆的圆心为,半径为.圆圆心为,半径为,因为两圆的圆心距为,两圆的半径和为,所以两圆的半径和等于两圆的圆心距,因此两圆相外切,故选:A10、C【解析】根据不等式解集为,得方程解为或,且,利用韦达定理即可将用表示,即可判断各选项的正误.【详解】解:因为不等式解集为,所以方程的解为或,且,所以,所以,所以,故ABD错误;,故C正确.故选:C.11、B【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环累乘值,并判断满足时输出的值【详解】解:模拟执行程序框图,可得,时,不满足条件,;不满足条件,;不满足条件,;满足条件,退出循环,输出的值为27故选:12、A【解析】写出抛物线的标准方程,即可确定焦点到准线的距离.【详解】由题设,抛物线的标准方程为,则,∴焦点到准线的距离为4.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由条件②写出一个等比数列,再求出并确保单调递增即可作答.【详解】因是等比数列,令,当时,,,是递增数列,令是互不相等的三个正整数,且,若,,成等差数列,则,即,则有,显然、都是正整数,,都是偶数,于是得是奇数,从而有不成立,即,,不成等差数列,数列不成等差数列,所以.故答案为:14、【解析】连接,根据题意,结合空间向量加减法运算求解即可.【详解】解:连接∵四面体中,,分别在,上,且,∴∴∴.故答案为:15、①.;②.【解析】根据等差数列的定义,结合等差数列前项和公式、裂项相消法进行求解即可.【详解】因为点在直线上,所以,所以数列是以,公差为的等差数列,所以;因为,所以,于是,故答案为:;16、##【解析】画出可行域,通过平移基准直线到可行域边界位置,由此求得的最大值.【详解】,画出可行域如下图所示,由图可知,平移基准直线到点时,取得最大值为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)y=1;(2)x+y-2=0;(3).【解析】(1)将圆的一般方程化为圆的标准方程,结合图形即可求出结果;(2)根据题意可知直线过圆心,利用直线的两点式方程计算即可得出结果;(3)设圆E的圆心E(a,1),根据题意可得圆E的半径为,结合圆与圆的位置关系和两点距离公式计算求出,进而得出圆的标准方程.【小问1详解】圆,即,其圆心为,半径为1.因为点(2,1)在圆上,如图,所以切线方程为y=1;【小问2详解】由题意得,圆的直径为2,所以直线过圆心,由直线的两点式方程,得,即直线的方程为x+y-2=0;【小问3详解】因为圆E的圆心在直线y=1上,设圆E的圆心E(a,1),由圆E与y轴相切,得R=a()又圆E与圆相外切,所以,由两点距离公式得,所以,解得,所以圆心,,所以圆E的方程为.18、(1);(2);(3).【解析】(1)由题意中离心率和长轴长可求出,即可求出椭圆方程.(2)设出与的坐标即直线的方程,把直线与椭圆方程进行联立写出韦达定理,由题意以为直径圆经过原点可得,化简即可求出直线的斜率.(3)由题意可得圆的方程,设,由和直线的方程化简,即可得到答案.【小问1详解】,,椭圆C的方程为.【小问2详解】由题意知直线的斜率存在且不为0,设直线的方程为.设.把直线的方程与椭圆的方程进行联立得:..由以为直径圆经过原点知,..经检验,满足,所以.【小问3详解】由题意可得圆的方程为,设,由得.①.当时,,直线的方程为.直线过椭圆的右焦点.当时,直线的斜率为且过,②把①代入②中得.故直线过椭圆的右焦点.综上所述,直线过椭圆的右焦点.19、(1)(2)(3)满足条件的直线不存在,详见解析【解析】根据条件直接求出,进而求出椭圆标准方程;设,表示出,求出其范围;设CD的中点为;由,则;得到其斜率的乘积为,最后列取方程联立计算即可.【详解】解:由题意可知,,则;所以椭圆C的方程为:;由题意可知,,设,则,;所以的取值范围是;假设存在满足条件的直线,根据题意得直线的斜率存在;则设直线的方程为:;消化简得:;,则;;设,则CD的中点为;,;,则;,即;即,无解;故满足条件的直线不存在.【点睛】本题考查椭圆的简单几何性质,向量的数量积,直线的垂直,设而不求的思想方法,关键在于将几何条件进行适当的转化,还考查了学生的综合运算能力,属于中档题.20、(1)证明见解析(2)(3)存点,【解析】(1)先证明平面,由平面,可证明结论.(2)以分别为轴,建立空间直角坐标系,分别求出平面与平面的法向量,利用向量法求求解即可.(3)设,,则,则由向量法结合条件可得答案.【详解】(1)在长方体中,,又,所以平面又平面,所以.(2)以分别为轴,建立空间直角坐标系因为,,是棱的中点则则为平面的一个法向量.设为平面的一个法向量.,所以,即取,可得所以如图平面与平面夹角为锐角,所以平面与平面夹角的余弦值为.(3)设,,则由(2)平面的一个法向量设与平面所成角为则解得,取所以存在点,满足条件.21、(1)不公平,理由见解析.(2)【解析】(1)通过计算概率来进行判断.(2)利用几何概型计算出所求概率.【小问1详解】两数之和为奇数的概率为,两数之和为偶数的概率为,两个概率不相等,所以不公平.【小问2详解】设甲到的时刻为,乙到的时刻为,则,若它们中的任意一艘都不需要等待码头空出,则或,画出可行域如下图阴影部分所示,所以所求的概率为:.22、(1)4x﹣y+2=0(2)答案见解析(3)(0,2)∪(2,+∞)【解析】(1)求出f(x)的导数,可得切线的斜率和切点坐标,由直线的点斜式方程可得所求切线的方程;(2)求得f(x)的导数,分a、0<a两种情况讨论求出答案即可;(3)由题意可得存在x∈(0,+∞),使得不等式成立,令,x>0,求得其最小值,再把最小值看成关于的函数,结合其单调性和极值可得答案【小问1详解】函数f(x)的定义域为(0,+∞),当a=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论