版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省合肥一中,八中、六中高二数学第一学期期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数据的平均数是,方差是4,则数据的方差是()A.3.4 B.3.6C.3.8 D.42.圆与圆的公切线的条数为()A.1 B.2C.3 D.43.下列直线中,倾斜角最大的为()A. B.C. D.4.已知F为椭圆的右焦点,A为C的右顶点,B为C上的点,且垂直于x轴.若直线AB的斜率为,则椭圆C的离心率为()A. B.C. D.5.已知双曲线上点到点的距离为15,则点到点的距离为()A.9 B.6C.6或36 D.9或216.已知抛物线的焦点为,抛物线的焦点为,点在上,且,则直线的斜率为A. B.C. D.7.等比数列中,,则()A. B.C.2 D.48.已知实数a,b,c满足,,则a,b,c的大小关系为()A. B.C. D.9.下列四个命题中为真命题的是()A.设p:1<x<2,q:2x>1,则p是q的必要不充分条件B.命题“”的否定是“”C.函数的最小值是4D.与的图象关于直线y=x对称10.已知梯形中,,且,则的值为()A. B.C. D.11.以轴为对称轴,顶点为坐标原点,焦点到准线的距离为4的抛物线方程是()A. B.C.或 D.或12.如图,在直三棱柱中,D为棱的中点,,,,则异面直线CD与所成角的余弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设a为实数,若直线与直线平行,则a值为______.14.与同一条直线都相交的两条直线的位置关系是________15.已知等差数列满足,请写出一个符合条件的通项公式______16.双曲线上的一点到一个焦点的距离等于1,那么点到另一个焦点的距离为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和是,且,等差数列中,(1)求数列的通项公式;(2)定义:记,求数列的前20项和18.(12分)已知圆M经过原点和点,且它的圆心M在直线上.(1)求圆M的方程;(2)若点D为圆M上的动点,定点,求线段CD的中点P的轨迹方程.19.(12分)在△ABC中,角A,B,C的对边分别是,已知(1)求角B的大小;(2)求三角形ABC的面积.20.(12分)如图,在正方体中,为的中点,点在棱上(1)若,证明:与平面不垂直;(2)若平面,求平面与平面的夹角的余弦值21.(12分)设椭圆的左,右焦点分别为,其离心率为,且点在C上.(1)求C的方程;(2)O为坐标原点,P为C上任意一点.若M为的中点,过M且平行于的直线l交椭圆C于A,B两点,是否存在实数,使得?若存在,求值;若不存在,说明理由.22.(10分)新冠疫情下,有一学校推出了食堂监管力度的评价与食品质量的评价系统,每项评价只有合格和不合格两个选项,师生可以随时进行评价,某工作人员利用随机抽样的方法抽取了200位师生的信息,发现对监管力度满意的占75%,对食品质量满意的占60%,其中对监管力度和食品质量都满意的有80人.(1)完成列联表,试问:是否有99%的把握判断监管力度与食品质量有关联?监督力度情况食品质量情况对监督力度满意对监督力度不满意总计对食品质量满意80对食品质量不满意总计200(2)为了改进工作作风,针对抽取的200位师生,对监管力度不满意的人抽取3位征求意见,用X表示3人中对监管力度与食品质量都不满意的人数,求X的分布列与均值.参考公式:,其中.参考数据:①当时,有90%的把握判断变量A、B有关联;②当时,有95%的把握判断变量A、B有关联;③当时,有99%的把握判断变量A、B有关联.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用方差的定义即可解得.【详解】由方差的定义,,则,所以数据的方差为:.故选:B2、D【解析】公切线条数与圆与圆的位置关系是相关的,所以第一步需要判断圆与圆的位置关系.【详解】圆的圆心坐标为,半径为3;圆的圆心坐标为,半径为1,所以两圆的心心距为,所以两圆相离,公切线有4条.故选:D.3、D【解析】首先分别求直线的斜率,再结合直线倾斜角与斜率的关系,即可判断选项.【详解】A.直线的斜率;B.直线的斜率;C.直线的斜率;D.直线的斜率,因为,结合直线的斜率与倾斜角的关系,可知直线的倾斜角最大.故选:D4、D【解析】根据题意表示出点的坐标,再由直线AB的斜率为,列方程可求出椭圆的离心率【详解】由题意得,,当时,,得,由题意可得点在第一象限,所以,因为直线AB的斜率为,所以,化简得,所以,,得(舍去),或,所以离心率,故选:D5、D【解析】利用双曲线的定义可得答案.【详解】设,,,为双曲线的焦点,则由双曲线定义,知,而所以或21故选:D.6、B【解析】根据抛物线的定义,求得p的值,即可得抛物线,的标准方程,求得抛物线的焦点坐标后,再根据斜率公式求解.【详解】因为,所以,解得,所以直线的斜率为.故选B.【点睛】本题考查了抛物线的定义的应用,考查了抛物线的简单性质,涉及了直线的斜率公式;抛物线上的点到焦点的距离等于其到准线的距离;解题过程中注意焦点的位置.7、D【解析】利用等比数列的下标特点,即可得到结果.【详解】∵,∴,∴,∴.故选:D8、A【解析】利用对数的性质可得,,再构造函数,利用导数判断,再构造,利用导数判断出函数的单调性,再由单调性即可求解.【详解】由题意可得均大于,因为,所以,所以,且,令,,当时,,所以在单调递增,所以,所以,即,令,,当时,,所以在上单调递减,由,,所以,所以,综上所述,.故选:A9、D【解析】根据推出关系和集合的包含关系判断A,根据全称命题的否定形式可判断B,根据对钩函数性质即三角函数的性质可判断C,根据反函数的图像性质可判断D.【详解】解:对于选项A:是的真子集,所以命题p是q的充分不必要条件,故A错误;对于选项B:命题“”的否定是“”,故B错误;对于选项C:函数,当时,,函数单调递减,当时取最小值,故C错误;对于选项D:与互为反函数,故图象关于直线y=x对称,故D正确.10、D【解析】根据共线定理、平面向量的加法和减法法则,即可求得,进而求出的值,即可求出结果.【详解】因为,所以又,所以.故选:D.11、C【解析】根据抛物线的概念以及几何性质即可求抛物线的标准方程.【详解】依题意设抛物线方程为因为焦点到准线的距离为4,所以,所以,所以抛物线方程或故选:C12、A【解析】以C为坐标原点,分别以,,方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系.运用异面直线的空间向量求解方法,可求得答案.【详解】解:以C为坐标原点,分别以,,的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系.由已知可得,,,,则,,所以.又因为异面直线所成的角的范围为,所以异面直线与所成角的余弦值为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据两直线平行得到,解方程组即可求出结果.【详解】由题意可知,解得,故答案为:.14、平行,相交或者异面【解析】由空间中两直线的位置关系求解即可【详解】由题意与同一条直线都相交的两条直线的位置关系可能是:平行,相交或者异面,故答案为:平行,相交或者异面,15、3(答案不唯一)【解析】由已知条件结合等差数列的性质可得,则,从而可写出数列的一个通项公式【详解】因为是等差数列,且,所以,当公差为0时,;公差为1时,;…故答案为:3(答案为唯一)16、【解析】首先将已知的双曲线方程转化为标准方程,然后根据双曲线的定义知双曲线上的点到两个焦点的距离之差的绝对值为,即可求出点到另一个焦点的距离为17.考点:双曲线的定义.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)利用求得递推关系得等比数列,从而得通项公式,再由等差数列的基本时法求得通项公式;(2)根据定义求得,然后分组求和法求得和【小问1详解】由题意,当时,两式相减,得,即是首项为3,公比为3的等比数列设数列的公差为,小问2详解】由18、(1).(2).【解析】(1)设圆M的方程为,由已知条件建立方程组,求解即可;(2)设,,依题意得.代入圆M的方程可得点P的轨迹方程.【小问1详解】解:设圆M的方程为,则圆心依题意得,解得.所以圆M的方程为.【小问2详解】解:设,,依题意得,得.点为圆M上的动点,得,化简得P的轨迹方程为.19、(1)B=300(2)【解析】分析:(1)由同角三角函数关系先求,由正弦定理可求值,从而可求的值;(2)先求得的值,代入三角函数面积公式即可得结果.详解:(1)由正弦定理又∴B为锐角sinA=,由正弦定理B=300(2),∴.点睛:以三角形和为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.20、(1)证明见解析(2)【解析】(1)设正方体的棱长为,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,计算出,即可证得结论成立;(2)利用空间向量法可求得平面与平面的夹角的余弦值.【小问1详解】证明:以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,设正方体的棱长为,则、、、,由得点的坐标为,,,因为,所以与不垂直,所以与平面不垂直【小问2详解】解:设,则,,因为平面,所以,所以,得,且,即,所以,,设平面的法向量为,由,取,可得,因为平面,所以平面的一个法向量为,所以,所以平面与平面所成夹角的余弦值为21、(1);(2).【解析】(1)列出关于a、b、c的方程组求解即可;(2)直线l斜率不存在时,易得λ的值;斜率存在时,设l方程为,联立直线l与椭圆C的方程,求出;求出OP方程,联立OP方程与椭圆C的方程,求出;代入即可求得λ.【小问1详解】由已知可得,解得,∴椭圆C的标准方程为.【小问2详解】若直线的斜率不存在时,,∴;当斜率存在时,设直线l的方程为.联立直线l与椭圆方程,消去y,得,∴.∵,设直线的方程为,联立直线与椭圆方程,消去y,得,解得.∴,∴,同理,∴,∵,∴,故,存在满足条件,综上可得,存在满足条件.【点睛】关键点点睛:本题的关键在于弦长公式的运用,AB斜率为k,,M(1,0),则,,,将弦长之积转化为韦达定理求解.22、(1)列联表见解析,有99%的把握判断监管力度与食品质量有关联;(2)X的分布列见解析,X的期望为【解析】(1)根据给定条件完善列联表,再计算的观测值并结合给定数据即可作答.(2)求出X的可能值及各个值对应的概率列出X的分布列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度演艺经纪合同:艺人经纪公司与合作演员之间的演艺活动安排与分成(2024版)3篇
- 房产财产抵押担保合同2024年度修订2篇
- 2024年度电商平台运营推广合作合同的标的和具体描述3篇
- 柴油运输服务合同
- 吊篮安装拆卸施工合同
- 养殖场地租赁合同怎样写
- 2024年度建筑工程消防系统安装合同2篇
- 2024年度智能交通系统建设与运营合作协议2篇
- 2024年度商标转让合同标的及商标权属变更3篇
- 2024年度货运代理服务合同具体描述与服务内容
- 《电子商务概论》课件-第二章 物联网与人工智能
- 2024年世界职业院校技能大赛中职组“婴幼儿保育组”赛项考试题库-上(单选题)
- 栏杆喷漆合同范例
- 6人小品《没有学习的人不伤心》台词完整版
- 《注册建造师执业工程规模标准》
- 《王戎不取道旁李》课件完美版
- 口腔科诊断证明书模板
- 国学知识文库集部别集·楼居杂著野航诗稿野航文稿野航附录
- 公共政策执行的几种理论模型(最新整理)
- MODIS数据说明(经典)
- 小学美术课堂教学评价表
评论
0/150
提交评论