版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页福建省龙岩市上杭四中学2025届数学九年级第一学期开学教学质量检测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)函数y中,自变量x的取值范围是()A.x=-5 B.x≠-5 C.x=0 D.x≠02、(4分)在等腰三角形ABC中,AB=4,BC=2,则ΔABC的周长为()A.10 B.8 C.8或10 D.6或83、(4分)如图,线段AB两端点的坐标分别为A(-1,0),B(1,1),把线段AB平移到CD位置,若线段CD两端点的坐标分别为C(1,a),D(b,4),则a+b的值为()A.7 B.6 C.5 D.44、(4分)若分式有意义,则的取值范围是()A. B. C. D.5、(4分)如图,在矩形ABCD中,AB=2,AD=3,E是BC边上一点,将ΔABE沿AE折叠,使点B落在点B'处,连接CB',则CB'的最小值是()A.13-2 B.13+2 C.6、(4分)如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=75°,∠AED的度数是()A.120° B.115° C.105° D.100°7、(4分)一次函数y=—2x+3的图象与两坐标轴的交点是()A.(3,1)(1,); B.(1,3)(,1); C.(3,0)(0,); D.(0,3)(,0)8、(4分)在Rt△ABC中,∠C=90°,AC=4,AB=5,则cosA的值是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在平行四边形中,点在上,,点是的中点,若点以1厘米/秒的速度从点出发,沿向点运动;点同时以2厘米/秒的速度从点出发,沿向点运动,点运动到停止运动,点也同时停止运动,当点运动时间是_____秒时,以点为顶点的四边形是平行四边形.10、(4分)若分式的值与1互为相反数,则x的值是__________.11、(4分)如图,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为基本图案通过连续四次旋转所组成,这四次旋转中,旋转角度最小是______°.12、(4分)如图,在菱形ABCD中,AB=5,对角线AC=1.若过点A作AE⊥BC,垂足为E,则AE的长为_________.13、(4分)若方程x2+kx+9=0有两个相等的实数根,则k=_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图1,在正方形ABCD中,E、F分别是BC、AB上一点,且AF=BE,AE与DF交于点G.(1)求证:AE=DF.(2)如图2,在DG上取一点M,使AG=MG,连接CM,取CM的中点P.写出线段PD与DG之间的数量关系,并说明理由.(3)如图3,连接CG.若CG=BC,则AF:FB的值为.15、(8分)如图,一次函数y=kx+b(k≠0)经过点B(0,1),且与反比例函数y=(m≠0)的图象在第一象限有公共点A(1,2).(1)求一次函数与反比例函数的解析式;(2)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?16、(8分)如图1,点C、D是线段AB同侧两点,且AC=BD,∠CAB=∠DBA,连接BC,AD交于点E.(1)求证:AE=BE;(2)如图2,△ABF与△ABD关于直线AB对称,连接EF.①判断四边形ACBF的形状,并说明理由;②若∠DAB=30°,AE=5,DE=3,求线段EF的长.17、(10分)如图,正方形ABCD的边长为8,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F.(1)请判断△PFA与△ABE是否相似,并说明理由;(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.18、(10分)把下列各式分解因式:(1)x(x-y)2-2(y-x)2(2)(x2+4)2-16x2B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)函数有意义,则自变量x的取值范围是___.20、(4分)在函数中,自变量的取值范围是________.21、(4分)如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是_____.22、(4分)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.23、(4分)把(a-2)根号外的因式移到根号内,其结果为____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,点E是正方形ABCD的BC延长线上一点,连接ED,过点B作交ED的延长线于点F,连接CF.(1)若,,求BF的长;(2)求证:.25、(10分)中国古代有着辉煌的数学成就,《周牌算经》、《九章算术》、《海岛算经》、《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,求他选中《九章算术》的概率;(2)小聪拟从这4部数学名著中选择2部作为假课外拓展学习内容,用列表或树状图求选中的名著恰好是《九章算术》和《周牌算经》的概率.26、(12分)阅读材料:在实数范围内,当且时,我们由非负数的性质知道,所以,即:,当且仅当=时,等号成立,这就是数学上有名的“均值不等式”,若与的积为定值.则有最小值:请问:若,则当取何值时,代数式取最小值?最小值是多少?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
根据分式的意义的条件:分母不等于0,可以求出x的范围.【详解】解:根据题意得:x+1≠0,
解得:x≠-1.
故选B.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2、A【解析】
等腰△ABC的两边长分别为4和2,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是AB,则周长为4+4+2=10;②当腰是BC,则三边为4,2,2,此时不能构成三角形,舍去.故选A.此题考查等腰三角形的性质,三角形三边关系,解题关键在于分情况讨论3、B【解析】
根据平移的性质分别求出a、b的值,计算即可.【详解】解:点A的横坐标为-1,点C的横坐标为1,则线段AB先向右平移2个单位,∵点B的横坐标为1,∴点D的横坐标为3,即b=3,同理,a=3,∴a+b=3+3=6,故选:B.本题考查的是坐标与图形变化-平移,掌握平移变换与坐标变化之间的规律是解题的关键.4、B【解析】
分式有意义时,分母x-1≠0,由此求得x的取值范围.【详解】依题意得:x-1≠0,解得x≠1.故选B.本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.5、A【解析】
由矩形的性质得出∠B=90°,BC=AD=3,由折叠的性质得:AB'=AB=1,当A、B'、C三点共线时,CB'的值最小,由勾股定理得出AC=AB2+BC2=【详解】解:∵四边形ABCD是矩形,
∴∠B=90°,BC=AD=3,
由折叠的性质得:AB'=AB=1,
当A、B'、C三点共线时,CB'的值最小,
此时AC=AB2+BC2=22+3本题考查了翻折变换的性质、矩形的性质、勾股定理等知识;熟练掌握翻折变换的性质和勾股定理是解题的关键.6、A【解析】
如解图所示,根据多边形的外角和即可求出∠5,然后根据平角的定义即可求出结论.【详解】解:∵∠1=∠2=∠3=∠4=75°,∴∠5=360°﹣75°×4=360°﹣300°=60°,∴∠AED=180°﹣∠5=180°﹣60°=120°.故选:A.此题考查的是多边形的外角和平角的定义,掌握多边形的外角和都等于360°是解决此题的关键.7、D【解析】y=—2x+3与横轴的交点为(,0),与纵轴的交点为(0,3),故选D8、D【解析】
根据余弦的定义计算即可.【详解】解:如图,
在Rt△ABC中,,
故选:D.本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、3或【解析】
由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBD=∠CBD,∴∠FBD=∠FDB,∴FB=FD=11cm,∵AF=5cm,∴AD=16cm,∵点E是BC的中点,∴CE=BC=AD=8cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,分两种情况:①当点Q在EC上时,根据PF=EQ可得:5-t=8-2t,解得:t=3;②当Q在BE上时,根据PF=QE可得:5-t=2t-8,解得:t=.所以,t的值为:t=3或t=.故答案为:3或.本题考查了平行四边形的判定与性质、等腰三角形的判定与性质、一元一次方程的应用等知识,熟练掌握平行四边形的判定与性质是解决问题的关键.10、-1【解析】
根据相反数的性质列出分式方程求解即可.【详解】∵分式的值与1互为相反数∴解得经检验,当时,,所以是方程的根故答案为:.本题考查了分式方程的运算问题,掌握分式方程的解法、相反数的性质是解题的关键.11、72【解析】试题解析:观察图形可知,中心角是由五个相同的角组成,∴旋转角度是∴这四次旋转中,旋转角度最小是故答案为72.12、【解析】
设BE=x,则CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理表示出AE的平方,列出方程求解并进一步得到AE的长.【详解】设BE=x,则CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理可得:所以解得,所以AE=.考点:1.菱形的性质;2.勾股定理.13、±1【解析】试题分析:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±1.故答案为±1.考点:根的判别式.三、解答题(本大题共5个小题,共48分)14、(1) 见解析;(2) DG=DP,理由见解析;(3) 1∶1.【解析】
(1)用SAS证△ABE≌△DAF即可;(2)DG=DP,连接GP并延长至点Q,使PQ=PG,连接CQ,DQ,先用SAS证△PMG≌△PCQ,得CQ=MG=AG,进一步证明∠DAG=∠DCQ,再用SAS证明△DAG≌△DCQ,得∠ADF=∠CDQ,于是有∠FDQ=90°,进而可得△DPG为等腰直角三角形,由此即得结论;(3)延长AE、DC交于点H,由条件CG=BC可证CD=CG=CH,进一步用SAS证△ABE≌△HCE,得BE=CE,因为AF=BE,所以AF:BF=BE:CE=1:1.【详解】解:(1)证明:正方形ABCD中,AB=AD,∠ABE=∠DAF=90°,BE=AF,∴△ABE≌△DAF(SAS)∴AE=DF;(2)DG=DP,理由如下:如图,连接GP并延长至点Q,使PQ=PG,连接CQ,DQ,∵PM=PC,∠MPG=∠CPQ,∴△PMG≌△PCQ(SAS),∴CQ=MG=AG,∠PGM=∠PQC,∴CQ∥DF,∴∠DCQ=∠FDC=∠AFG,∵∠AFG+∠BAE=90°,∠DAG+∠BAE=90°,∴∠AFG=∠DAG.∴∠DAG=∠DCQ.又∵DA=DC,∴△DAG≌△DCQ(SAS).∴∠ADF=∠CDQ. ∵∠ADC=90°,∴∠FDQ=90°. ∴△GDQ为等腰直角三角形∵P为GQ的中点∴△DPG为等腰直角三角形.∴DG=DP.(3)1∶1.证明:延长AE、DC交于点H,∵CG=BC,BC=CD,∴CG=CD,∴∠1=∠2.∵∠1+∠H=90°,∠2+∠3=90°,∴∠3=∠H.∴CG=CH.∴CD=CG=CH.∵AB=CD,∴AB=CH.∵∠BAE=∠H,∠AEB=∠HEC,∴△ABE≌△HCE(SAS).∴BE=CE.∵AF=BE,∴AF:BF=BE:CE=1:1.本题主要考查了正方形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质,其中第(1)小题是基础,第(2)(3)两小题探求结论的关键是添辅助线构造全等三角形,从解题过程看,熟练掌握正方形的性质和全等三角形的判定与性质是解题的关键.15、(1)y=x+1;y=;(2)当x<﹣2或0<x<1时,一次函数的值小于反比例函数的值.【解析】
(1)把点A、B坐标代入y=kx+b,把点A的坐标代入y=,根据待定系数法即可求得一次函数与反比例函数的解析式;(2)联立方程,求得得一次函数与反比例函数的图象交点坐标,然后利用函数图象的位置关系求解.【详解】(1)∵一次函数y=kx+b(k≠0)经过点A(1,2),点B(0,1),∴,解得k=1,b=1∴一次函数解析式为y=x+1;∵点A(1,2)在反比例函数y=的图象上,∴m=1×2=2,∴反比例函数解析式为y=;(2)∵方程组的解为或,∴一次函数与反比例函数的图象交点坐标为(1,2)、(﹣2,﹣1),∴当x<﹣2或0<x<1时,一次函数的值小于反比例函数的值.本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.16、(1)证明见解析;(2)①四边形ACBF为平行四边形,理由见解析;②EF=1.【解析】
(1)利用SAS证△ABC≌△BAD可得.(2)①根据题意知:AC=BD=BF,并由内错角相等可得AC∥BF,所以由一组对边平行且相等的四边形是平行四边形,可得结论;②如图2,作辅助线,证明△ADF是等边三角形,得AD=AE+DE=3+5=8,根据等腰三角形三线合一得AM=DM=4,最后利用勾股定理可得FM和EF的长.【详解】(1)证明:在△ABC和△BAD中,∵,∴△ABC≌△BAD(SAS),∴∠CBA=∠DAB,∴AE=BE;(2)解:①四边形ACBF为平行四边形;理由是:由对称得:△DAB≌△FAB,∴∠ABD=∠ABF=∠CAB,BD=BF,∴AC∥BF,∵AC=BD=BF,∴四边形ACBF为平行四边形;②如图2,过F作FM⊥AD于,连接DF,∵△DAB≌△FAB,∴∠FAB=∠DAB=30°,AD=AF,∴△ADF是等边三角形,∴AD=AE+DE=3+5=8,∵FM⊥AD,∴AM=DM=4,∵DE=3,∴ME=1,Rt△AFM中,由勾股定理得:FM===4,∴EF==1.本题是三角形的综合题,考查了全等三角形的判定的性质、等边三角形的性质和判定,勾股定理,本题中最后一问,有难度,恰当地作辅助线是解题的关键.17、(1)见解析;(2)存在,x的值为2或5.【解析】
(1)在△PFA与△ABE中,易得∠PAF=∠AEB及∠PFA=∠ABE=90°;故可得△PFA∽△ABE;(2)根据题意:若△EFP∽△ABE,则∠PEF=∠EAB;必须有PE∥AB;分两种情况进而列出关系式.【详解】(1)证明:∵AD∥BC,∴∠PAF=∠AEB.∵∠PFA=∠ABE=90°,∴△PFA∽△ABE.(2)若△EFP∽△ABE,则∠PEF=∠EAB.如图,连接PE,DE,∴PE∥AB.∴四边形ABEP为矩形.∴PA=EB=2,即x=2.如图,延长AD至点P,作PF⊥AE于点F,连接PE,若△PFE∽△ABE,则∠PEF=∠AEB.∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点.∵AE=,∴EF=AE=.∵,∴PE=5,即x=5.∴满足条件的x的值为2或5.此题考查正方形的性质,相似三角形的判定,解题关键在于作辅助线.18、(1)(x-y)²(x-1);(1)(x+1)²(x-1)².【解析】
(1)直接提取公因式(x-y)1,进而分解因式得出答案;(1)直接利用平方差公式分解因式,进而结合完全平方公式分解因式即可.【详解】(1)x(x-y)1-1(y-x)1
=(x-y)1(x-1);(1)(x1+4)1-16x1=(x1+4-4x)(x1+4+4x)=(x-1)1(x+1)1.此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、且【解析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件进行求解即可.【详解】要使在实数范围内有意义,必须所以x≥1且,故答案为:x≥1且.本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.20、x≠1【解析】
根据分式有意义的条件,即可求解.【详解】∵在函数中,x-1≠0,∴x≠1.故答案是:x≠1.本题主要考查函数的自变量的取值范围,掌握分式的分母不等于零,是解题的关键.21、1【解析】
根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.【详解】∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=1,故答案为1.本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.22、57.5【解析】
根据题意有△ABF∽△ADE,再根据相似三角形的性质可求出AD的长,进而得到答案.【详解】如图,AE与BC交于点F,由BC//ED得△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得:AD=62.5(尺),则BD=AD-AB=62.5-5=57.5(尺)故答案为57.5.本题主要考查相似三角形的性质:两个三角形相似对应角相等,对应边的比相等.23、-【解析】根据二次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年新高一物理初升高衔接《过关检测》含答案解析
- 塑料杯产品入市调查研究报告
- 燃气冰箱产业规划专项研究报告
- USB无线路由器市场发展现状调查及供需格局分析预测报告
- 美容用躺椅市场发展现状调查及供需格局分析预测报告
- 碎骨机产品入市调查研究报告
- 胶合板涂胶机市场发展预测和趋势分析
- 《微光机电系统》课件
- 睡眠用眼罩市场洞察报告
- 《心电图教程》课件
- 医院药房人员培训课件
- 2024年度Logo设计及品牌形象重塑合同
- 2024-2030年铝型材行业市场深度调研及前景趋势与投资战略研究报告
- 2024-2030年辣椒种植行业市场深度分析及发展策略研究报告
- 通信工程施工方案
- 初中英语研修方案
- 化工厂拆除施工方案
- 海南自贸港优化营商环境条例7大亮点解读课件
- 中国邮政储蓄银行2024年下半年社会招聘高频难、易错点500题模拟试题附带答案详解
- 《中华人民共和国道路交通安全法实施条例》知识专题培训
- 2024-2030年中国户外电源行业市场趋势调查及需求场景趋势分析报告
评论
0/150
提交评论