版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页福建省建宁县2025届九上数学开学统考模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在平行四边形ABCD中,E是边CD上一点,将沿AE折叠至处,与CE交于点F,若,,则的度数为A. B. C. D.2、(4分)已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线x0经过D点,交AB于E点,且OB∙AC=160,则点E的坐标为().A.(3,8) B.(12,) C.(4,8) D.(12,4)3、(4分)如果一组数据-3,x,0,1,x,6,9,5的平均数为5,则x为()A.22 B.11 C.8 D.54、(4分)把直线y=-x+1向上平移3个单位长度后得到的直线的解析式为()A. B.C. D.5、(4分)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~3月份利润的平均数是120万元B.1~5月份利润的众数是130万元C.1~5月份利润的中位数为120万元D.1~2月份利润的增长快于2~3月份利润的增长6、(4分)点关于轴对称的点的坐标是()A. B. C. D.7、(4分)下列是一次函数的是()A. B. C. D.8、(4分)如图,中,平分,交于,交于,若,则四边形的周长是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)对甲、乙、丙三名射击手进行20次测试,平均成绩都是8.5环,方差分别是0.4,3.2,1.6,在这三名射击手中成绩比较稳定的是_________________.10、(4分)若,则=______11、(4分)根据指令,机器人在平面上能完成下列动作:先原地逆时针旋转角度,再朝其面对的方向沿直线行走距离,现机器人在平面直角坐标系的坐标原点,且面对轴正方向.请你给机器人下一个指令__________,使其移动到点.12、(4分)如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为_____.13、(4分)如图,等腰三角形中,,是底边上的高,则AD=________________.三、解答题(本大题共5个小题,共48分)14、(12分)已知:一个正比例函数与一个一次函数的图象交于点A(1,4)且一次函数的图象与x轴交于点B(3,0),坐标原点为O.(1)求正比例函数与一次函数的解析式;(2)若一次函数交与y轴于点C,求△ACO的面积.15、(8分)计算:16、(8分)解不等式组:,并把解集在数轴上表示出来.17、(10分)已知,如图,在平行四边形ABCD中,AC、BD相交于O点,点E、F分别为BO、DO的中点,连接AF,CE.(1)求证:四边形AECF是平行四边形;(2)如果E,F点分别在DB和BD的延长线上时,且满足BE=DF,上述结论仍然成立吗?请说明理由.18、(10分)如图,已知是平行四边形中边的中点,是对角线,连结并延长交的延长线于点,连结.求证:四边形是平行四边形.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)正n边形的一个外角的度数为60°,则n的值为.20、(4分)化成最简二次根式后与最简二次根式的被开方数相同,则a的值为______.21、(4分)如图,一次函数y=-2x+2的图象与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作等腰直角三角形ABC,且∠BAC=90°,则点C坐标为_____22、(4分)如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是.23、(4分)已知关于的方程会产生增根,则__________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,AD是△ABC的边BC上的高,∠B=60°,∠C=45°,AC=6.求:(1)AD的长;(2)△ABC的面积.25、(10分)如图①,C地位于A、B两地之间,甲步行直接从C地前往B地,乙骑自行车由C地先回A地,再从A地前往B地(在A地停留时间忽略不计),已知两人同时出发且速度不变,乙的速度是甲的2.5倍,设出发xmin后,甲、乙两人离C地的距离为y1m、y2m,图②中线段OM表示y1与x的函数图象.(1)甲的速度为______m/min.乙的速度为______m/min.(2)在图②中画出y2与x的函数图象,并求出乙从A地前往B地时y2与x的函数关系式.(3)求出甲、乙两人相遇的时间.(4)请你重新设计题干中乙骑车的条件,使甲、乙两人恰好同时到达B地.要求:①不改变甲的任何条件.②乙的骑行路线仍然为从C地到A地再到B地.③简要说明理由.④写出一种方案即可.26、(12分)感知:如图①,在正方形中,点在对角线上(不与点、重合),连结、,过点作,交边于点.易知,进而证出.探究:如图②,点在射线上(不与点、重合),连结、,过点作,交的延长线于点.求证:.应用:如图②,若,,则四边形的面积为________.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
由平行四边形的性质得出,由折叠的性质得:,,由三角形的外角性质求出,与三角形内角和定理求出,即可得出的大小.【详解】四边形ABCD是平行四边形,,由折叠的性质得:,,,,,故选B.本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理,熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED'是解决问题的关键.2、B【解析】
过点B作轴于点,由可求出菱形的面积,由点的坐标可求出的长,根据勾股定理求出的长,故可得出点的坐标,对角线相交于D点可求出点坐标,用待定系数法可求出双曲线的解析式,与的解析式联立,即可求出点的坐标.【详解】过点B作轴于点,,点的坐标又菱形的边长为10,在中,又点是线段的中点,点的坐标为又直线的解析式为联立方程可得:解得:或,点的坐标为故选:B.本题主要考查反比例函数与一次函数以及菱形综合,熟练的掌握菱形面积求法是解决本题的关键.3、B【解析】
根据算术平均数的计算方法列方程求解即可.【详解】由平均数的计算公式得:(-3+x+0+1+x+6+9+5)=5解得:x=11,故选:B.考查算术平均数的计算方法,利用方程求解,熟记计算公式是解决问题的前提,是比较基础的题目.4、A【解析】
直接根据“上加下减”的原则进行解答即可.【详解】由“上加下减”的原则可知,把直线y=-x+1向上平移3个单位长度后所得直线的解析式为:y=-x+1+3,即y=-x+1.故选A.本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5、B【解析】
本题中的图为折线统计图,它反映出了数据的的多少和变化情况.由图可知,1~5月份的利润分别是100,110,130,115,130,通过这些数据依次解答选项中问题.【详解】A.1~3月份的利润分别是100,110,130,则平均数应为(100+110+130)÷3=,排除B.1~5月份的利润分别是100,110,130,115,130,众数为130,符合.C.1~5月份的利润从小到大排列分别是100,110,115,130,130,中位数为115,排除.D.1~2月份利润的增长了110-100=10,2~3月份利润的增长了130-110=20,1~2月份利润的增长慢于2~3月份利润的增长,排除.故答案为B本题考查了通过折线统计图分析数据的平均数,中位数,众数和每月之间的变化量的计算.平均数=各数据之和÷个数.中位数:把一组数据从小到大排列,若这组数据的个数为奇数个,取最中间的数作为中位数;若这组数据的个数为偶数个,则取中间两个数的平均数为中位数.众数:出现次数最多的数据为众数.6、A【解析】
根据关于y轴对称的点纵坐标相同,横坐标互为相反数即可得解.【详解】解:点关于轴对称的点的坐标是.故选A.本题主要考查关于坐标轴对称的点的坐标,关于x轴对称的点是横坐标相同,纵坐标互为相反数;关于y轴对称的点是纵坐标相同,横坐标互为相反数.7、B【解析】
根据一次函数的定义条件进行逐一分析即可.【详解】A.中自变量次数不为1,不是一次函数;B.,是一次函数;C.中自变量次数不为1,不是一次函数;D.中没有自变量次数不为1,不是一次函数.故选:B本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.8、A【解析】
根据DE∥AC、DF∥AB即可得出四边形AEDF为平行四边形,再根据AD平分∠BAC即可得出∠FAD=∠FDA,即FA=FD,从而得出平行四边形AEDF为菱形,根据菱形的性质结合AF=6即可求出四边形AEDF的周长.【详解】∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形,∠EAD=∠FDA.∵AD平分∠BAC,∴∠EAD=∠FAD=∠FDA,∴FA=FD,∴平行四边形AEDF为菱形.∵AF=6,∴C菱形AEDF=4AF=4×6=1.故选A.本题考查了菱形的判定与性质,解题的关键是证出四边形AEDF是菱形.本题属于基础题,难度不大,解决该题型题目时,熟记菱形的判定与性质是关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、甲【解析】
根据方差的意义即可得出结论.【详解】根据方差的定义,方差越小数据越稳定,因为=0.4,=3.2,=1.6,方差最小的为甲,所以本题中成绩比较稳定的是甲,故答案为甲.本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10、【解析】
设=k,同x=2k,y=4k,z=5k,再代入中化简即可.【详解】设=k,x=2k,y=4k,z=5k=.故答案是:.考查的是分式化简问题,利用比例性质通过设未知数的方式,代入分式化简可以求解.11、[3,135°].【解析】
解决本题要根据旋转的性质,构造直角三角形来解决.【详解】解:如图所示,设此点为C,属于第二象限的点,过C作CD⊥x轴于点D,那么OD=DC=3,
∴∠COD=45°,OC=OD÷cos45°=,则∠AOC=180°−45°=135°,那么指令为:[,135°]故答案为:[,135°]本题考查求新定义下的点的旋转坐标;应理解运动指令的含义,构造直角三角形求解.12、1【解析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.解答:解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,∴AP⊥BP,PN⊥BC,∴PM=PE=2,PE=PN=2,∴MN=2+2=1.故答案为1.13、1【解析】
先根据等腰三角形的性质求出BD的长,再根据勾股定理解答即可.【详解】根据等腰三角形的三线合一可得:BD=BC=×6=3cm,在直角△ABD中,由勾股定理得:AB2=BD2+AD2,所以,AD=1cm.故答案为1.本题考查了等腰三角形的性质和勾股定理.关键要熟知等腰三角形的三线合一可得.三、解答题(本大题共5个小题,共48分)14、(1)y=﹣2x+1;(2)2.【解析】
(1)先设正比例函数解析式为y=mx,再把(1,4)点代入可得m的值,进而得到解析式;设一次函数解析式为y=kx+b,把(1,4)(2,0)代入可得关于k、b的方程组,然后再解出k、b的值,进而得到解析式;(2)利用一次函数解析式,求得OC的长,进而得出△ACO的面积.【详解】解:(1)设正比例函数解析式为y=mx,∵图象经过点A(1,4),∴4=m×1,即m=4,∴正比例函数解析式为y=4x;设一次函数解析式为y=kx+b,∵图象经过(1,4)(2,0),∴,解得:,∴一次函数解析式为y=﹣2x+1.(2)在y=﹣2x+1中,令x=0,则y=1,∴C(0,1),∴OC=1,∴S△AOC=×1×1=2.此题主要考查了待定系数法求一次函数解析式以及三角形的面积,关键是用联立解析式的方法求出交点坐标.15、1-【解析】
根据实数的性质进行化简即可求解.【详解】解:原式=+2--1-=1-此题主要考查实数的运算,解题的关键是熟知实数的性质.16、【解析】
分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【详解】解不等式,得:,解不等式,得:,将不等式的解集表示在数轴上如下:则不等式组的解集为,本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.17、见解析【解析】(1)根据平行四边形的性质可得AO=CO,BO=DO,再由条件点E、F分别为BO、DO的中点,可得EO=OF,进而可判定四边形AECF是平行四边形;(2)由等式的性质可得EO=FO,再加上条件AO=CO可判定四边形AECF是平行四边形.(1)证明:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵点E、F分别为BO、DO的中点,∴EO=OF,∵AO=CO,∴四边形AECF是平行四边形;(2)解:结论仍然成立,理由:∵BE=DF,BO=DO,∴EO=FO,∵AO=CO,∴四边形AECF是平行四边形.18、见解析【解析】
先证明△ABE与△FCE全等,根据全等三角形的对应边相等得到AB=CF;再由AB与CF平行,根据一组对边平行且相等的四边形为平行四边形得到ABFC为平行四边形.【详解】证明:∵四边形ABCD为平行四边形,
∴AB∥DC,
∴∠ABE=∠ECF,
又∵E为BC的中点,
∴BE=CE,
在△ABE和△FCE中,,∴△ABE≌△FCE(ASA),
∴AB=CF,
又∵四边形ABCD为平行四边形,
∴AB∥CF,
∴四边形ABFC为平行四边形.此题考查了平行四边形的判定与性质,全等三角形的判定与性质,熟练掌握基本判定与性质是解本题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】
解:∵正n边形的一个外角的度数为10°,∴n=310÷10=1.故答案为:1.20、1.【解析】
先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.【详解】∵与最简二次根式是同类二次根式,且=1,∴a+1=3,解得:a=1.故答案为1.本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.21、(3,1);【解析】
先求出点A,B的坐标,再判断出△ABO≌△CAD,即可求出AD=2,CD=1,即可得出结论;【详解】如图,过点C作CD⊥x轴于D,令x=0,得y=2,令y=0,得x=1,∴A(1,0),B(0,2),∴OA=1,OB=2,∵△ABC是等腰直角三角形,∴AB=AC,∠BAC=90°,∴∠BAO+∠CAD=90°,∵∠ACD+∠CAD=90°,∴∠BAO=∠ACD,∵∠BOA=∠ADC=90°,∴△ABO≌△CAD,∴AD=BO=2,CD=AO=1,∴OD=3,∴C(3,1);此题考查一次函数综合,解题关键在于作辅助线22、27【解析】试题分析:首先连接DB,DE,设DE交AC于M,连接MB,DF.证明只有点F运动到点M时,EF+BF取最小值,再根据菱形的性质、勾股定理求得最小值.试题解析:连接DB,DE,设DE交AC于M,连接MB,DF,延长BA,DH⊥BA于H,∵四边形ABCD是菱形,∴AC,BD互相垂直平分,∴点B关于AC的对称点为D,∴FD=FB,∴FE+FB=FE+FD≥DE.只有当点F运动到点M时,取等号(两点之间线段最短),△ABD中,AD=AB,∠DAB=120°,∴∠HAD=60°,∵DH⊥AB,∴AH=AD,DH=32∵菱形ABCD的边长为4,E为AB的中点,∴AE=2,AH=2,∴EH=4,DH=23在RT△EHD中,DE=E∴EF+BF的最小值为27【考点】1.轴对称-最短路线问题;2.菱形的性质.23、4【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入整式方程算出未知字母的值.【详解】方程两边都乘(x−2),得2x−m=3(x−2),∵原方程有增根,∴最简公分母x−2=0,即增根为x=2,把x=2代入整式方程,得m=4.故答案为:4.此题考查分式方程的增根,解题关键在于根据方程有增根进行解答.二、解答题(本大题共3个小题,共30分)24、(1)AD=3;(2)S△ABC=9+3.【解析】
试题分析:(1)根据三角形内角和可得∠DAC=45°,根据等角对等边可得AD=CD,然后再根据勾股定理可计算出AD的长;(2)根据三角形内角和可得∠BAD=30°,再根据直角三角形的性质可得AB=2BD,然后利用勾股定理计算出BD的长,进而可得BC的长,然后利用三角形的面积公式计算即可.解:(1)∵∠C=45°,AD是△ABC的边BC上的高,∴∠DAC=45°,∴AD=CD.∵AC2=AD2+CD2,∴62=2AD2,∴AD=3(2)在Rt△ADB中,∵∠B=60°,∴∠BAD=30°,∴AB=2BD.∵AB2=BD2+AD2,∴(2BD)2=BD2+AD2,BD=.∴S△ABC=BC·AD=(BD+DC)·AD=×(+3)×3=9+3.25、(1)80;200;(2)画图如图②见解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心脏疾病手术名称
- 拖地推尘培训
- 小班体育游戏教案:球儿跑得快2
- 4.3 海洋与人类 课件高一上学期 地理 湘教版(2019)必修一
- 椎间盘与矫形术后护理
- 制造业 蓝领技能管理案例集 -稳定产业工人队伍 大力培养大国工匠 2024
- 艾滋病的发展历史
- 硬膜外血肿的护理
- 翡翠直播运营职业规划
- 肺动脉栓塞护理查房
- 现代艺术体系1951克里斯特勒
- 高一分文理科语文第一课
- 青春期多囊卵巢综合征诊治共识.ppt
- 施工标准化措施
- 维宏系统百问汇总整编
- 深圳市福田区大学生实习基地实习协议.doc
- 商品交易信息管理系统
- (完整版)风电开发协议-分散式风电
- 无机材料学报投稿模板
- (完整版)企业常年法律顾问服务方案
- 植物蛋白肽项目可行性研究报告立项申请
评论
0/150
提交评论