版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年湖南省邵阳市邵东县创新实验学校高三下学期教学测试(二)数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数满足:当时,,且对任意,都有,则()A.0 B.1 C.-1 D.2.设为定义在上的奇函数,当时,(为常数),则不等式的解集为()A. B. C. D.3.已知,是双曲线的两个焦点,过点且垂直于轴的直线与相交于,两点,若,则△的内切圆的半径为()A. B. C. D.4.已知复数满足(是虚数单位),则=()A. B. C. D.5.已知双曲线的左,右焦点分别为、,过的直线l交双曲线的右支于点P,以双曲线的实轴为直径的圆与直线l相切,切点为H,若,则双曲线C的离心率为()A. B. C. D.6.已知函数,若函数的图象恒在轴的上方,则实数的取值范围为()A. B. C. D.7.执行程序框图,则输出的数值为()A. B. C. D.8.已知下列命题:①“”的否定是“”;②已知为两个命题,若“”为假命题,则“”为真命题;③“”是“”的充分不必要条件;④“若,则且”的逆否命题为真命题.其中真命题的序号为()A.③④ B.①② C.①③ D.②④9.已知复数,若,则的值为()A.1 B. C. D.10.某部队在一次军演中要先后执行六项不同的任务,要求是:任务A必须排在前三项执行,且执行任务A之后需立即执行任务E,任务B、任务C不能相邻,则不同的执行方案共有()A.36种 B.44种 C.48种 D.54种11.若为虚数单位,则复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.直线与抛物线C:交于A,B两点,直线,且l与C相切,切点为P,记的面积为S,则的最小值为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,满足,,,则向量在的夹角为______.14.设平面向量与的夹角为,且,,则的取值范围为______.15.已知点是抛物线的准线上一点,F为抛物线的焦点,P为抛物线上的点,且,若双曲线C中心在原点,F是它的一个焦点,且过P点,当m取最小值时,双曲线C的离心率为______.16.二项式的展开式中所有项的二项式系数之和是64,则展开式中的常数项为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,直线的参数方程为,(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若点是直线的一点,过点作曲线的切线,切点为,求的最小值.18.(12分)中的内角,,的对边分别是,,,若,.(1)求;(2)若,点为边上一点,且,求的面积.19.(12分)已知函数.(1)若曲线在处的切线为,试求实数,的值;(2)当时,若有两个极值点,,且,,若不等式恒成立,试求实数m的取值范围.20.(12分)已知六面体如图所示,平面,,,,,,是棱上的点,且满足.(1)求证:直线平面;(2)求二面角的正弦值.21.(12分)已知,函数的最小值为1.(1)证明:.(2)若恒成立,求实数的最大值.22.(10分)在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖.按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图如图所示.(Ⅰ)求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);(Ⅱ)填写下面的列联表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有关”.女生男生总计获奖不获奖总计附表及公式:其中,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
由题意可知,代入函数表达式即可得解.【详解】由可知函数是周期为4的函数,.故选:C.【点睛】本题考查了分段函数和函数周期的应用,属于基础题.2.D【解析】
由可得,所以,由为定义在上的奇函数结合增函数+增函数=增函数,可知在上单调递增,注意到,再利用函数单调性即可解决.【详解】因为在上是奇函数.所以,解得,所以当时,,且时,单调递增,所以在上单调递增,因为,故有,解得.故选:D.【点睛】本题考查利用函数的奇偶性、单调性解不等式,考查学生对函数性质的灵活运用能力,是一道中档题.3.B【解析】
设左焦点的坐标,由AB的弦长可得a的值,进而可得双曲线的方程,及左右焦点的坐标,进而求出三角形ABF2的面积,再由三角形被内切圆的圆心分割3个三角形的面积之和可得内切圆的半径.【详解】由双曲线的方程可设左焦点,由题意可得,由,可得,所以双曲线的方程为:所以,所以三角形ABF2的周长为设内切圆的半径为r,所以三角形的面积,所以,解得,故选:B【点睛】本题考查求双曲线的方程和双曲线的性质及三角形的面积的求法,内切圆的半径与三角形长周长的一半之积等于三角形的面积可得半径的应用,属于中档题.4.A【解析】
把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】解:由,得,.故选.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.5.A【解析】
在中,由余弦定理,得到,再利用即可建立的方程.【详解】由已知,,在中,由余弦定理,得,又,,所以,,故选:A.【点睛】本题考查双曲线离心率的计算问题,处理双曲线离心率问题的关键是建立三者间的关系,本题是一道中档题.6.B【解析】
函数的图象恒在轴的上方,在上恒成立.即,即函数的图象在直线上方,先求出两者相切时的值,然后根据变化时,函数的变化趋势,从而得的范围.【详解】由题在上恒成立.即,的图象永远在的上方,设与的切点,则,解得,易知越小,图象越靠上,所以.故选:B.【点睛】本题考查函数图象与不等式恒成立的关系,考查转化与化归思想,首先函数图象转化为不等式恒成立,然后不等式恒成立再转化为函数图象,最后由极限位置直线与函数图象相切得出参数的值,然后得出参数范围.7.C【解析】
由题知:该程序框图是利用循环结构计算并输出变量的值,计算程序框图的运行结果即可得到答案.【详解】,,,,,满足条件,,,,,满足条件,,,,,满足条件,,,,,满足条件,,,,,不满足条件,输出.故选:C【点睛】本题主要考查程序框图中的循环结构,属于简单题.8.B【解析】
由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断.【详解】“”的否定是“”,正确;已知为两个命题,若“”为假命题,则“”为真命题,正确;“”是“”的必要不充分条件,错误;“若,则且”是假命题,则它的逆否命题为假命题,错误.故选:B.【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.9.D【解析】由复数模的定义可得:,求解关于实数的方程可得:.本题选择D选项.10.B【解析】
分三种情况,任务A排在第一位时,E排在第二位;任务A排在第二位时,E排在第三位;任务A排在第三位时,E排在第四位,结合任务B和C不能相邻,分别求出三种情况的排列方法,即可得到答案.【详解】六项不同的任务分别为A、B、C、D、E、F,如果任务A排在第一位时,E排在第二位,剩下四个位置,先排好D、F,再在D、F之间的3个空位中插入B、C,此时共有排列方法:;如果任务A排在第二位时,E排在第三位,则B,C可能分别在A、E的两侧,排列方法有,可能都在A、E的右侧,排列方法有;如果任务A排在第三位时,E排在第四位,则B,C分别在A、E的两侧;所以不同的执行方案共有种.【点睛】本题考查了排列组合问题,考查了学生的逻辑推理能力,属于中档题.11.D【解析】
根据复数的运算,化简得到,再结合复数的表示,即可求解,得到答案.【详解】由题意,根据复数的运算,可得,所对应的点为位于第四象限.故选D.【点睛】本题主要考查了复数的运算,以及复数的几何意义,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题.12.D【解析】
设出坐标,联立直线方程与抛物线方程,利用弦长公式求得,再由点到直线的距离公式求得到的距离,得到的面积为,作差后利用导数求最值.【详解】设,,联立,得则,则由,得设,则,则点到直线的距离从而.令当时,;当时,故,即的最小值为本题正确选项:【点睛】本题考查直线与抛物线位置关系的应用,考查利用导数求最值的问题.解决圆锥曲线中的面积类最值问题,通常采用构造函数关系的方式,然后结合导数或者利用函数值域的方法来求解最值.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
把平方利用数量积的运算化简即得解.【详解】因为,,,所以,∴,∴,因为所以.故答案为:【点睛】本题主要考查平面向量的数量积的运算法则,考查向量的夹角的计算,意在考查学生对这些知识的理解掌握水平.14.【解析】
根据已知条件计算出,结合得出,利用基本不等式可得出的取值范围,利用平面向量的数量积公式可求得的取值范围,进而可得出的取值范围.【详解】,,,由得,,由基本不等式可得,,,,,因此,的取值范围为.故答案为:.【点睛】本题考查利用向量的模求解平面向量夹角的取值范围,考查计算能力,属于中等题.15.【解析】
由点坐标可确定抛物线方程,由此得到坐标和准线方程;过作准线的垂线,垂足为,根据抛物线定义可得,可知当直线与抛物线相切时,取得最小值;利用抛物线切线的求解方法可求得点坐标,根据双曲线定义得到实轴长,结合焦距可求得所求的离心率.【详解】是抛物线准线上的一点抛物线方程为,准线方程为过作准线的垂线,垂足为,则设直线的倾斜角为,则当取得最小值时,最小,此时直线与抛物线相切设直线的方程为,代入得:,解得:或双曲线的实轴长为,焦距为双曲线的离心率故答案为:【点睛】本题考查双曲线离心率的求解问题,涉及到抛物线定义和标准方程的应用、双曲线定义的应用;关键是能够确定当取得最小值时,直线与抛物线相切,进而根据抛物线切线方程的求解方法求得点坐标.16.【解析】
由二项式系数性质求出,由二项展开式通项公式得出常数项的项数,从而得常数项.【详解】由题意,.展开式通项为,由得,∴常数项为.故答案为:.【点睛】本题考查二项式定理,考查二项式系数的性质,掌握二项展开式通项公式是解题关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),;(2)见解析【解析】
(1)消去t,得直线的普通方程,利用极坐标与普通方程互化公式得曲线的直角坐标方程;(2)判断与圆相离,连接,在中,,即可求解【详解】(1)将的参数方程(为参数)消去参数,得.因为,,所以曲线的直角坐标方程为.(2)由(1)知曲线是以为圆心,3为半径的圆,设圆心为,则圆心到直线的距离,所以与圆相离,且.连接,在中,,所以,,即的最小值为.【点睛】本题考查参数方程化普通方程,极坐标与普通方程互化,直线与圆的位置关系,是中档题18.(1)(2)10【解析】
(1)由二倍角的正弦公式以及正弦定理,可得,再根据二倍角的余弦公式计算即可;(2)由已知可得,利用余弦定理解出,由已知计算出与,再根据三角形的面积公式求出结果即可.【详解】(1),,在中,由正弦定理得,,又,,,(2),,,由余弦定理得,,则,化简得,,解得或(负值舍去),,,,,,的面积.【点睛】本题考查了三角形面积公式以及正弦定理、余弦定理的应用,考查了二倍角公式的应用,考查了运算能力,属于基础题.19.(1);(2).【解析】
(1)根据题意,求得的值,根据切点在切线上以及斜率等于,构造方程组求得的值;(2)函数有两个极值点,等价于方程的两个正根,,不等式恒成立,等价于恒成立,,令,求出导数,判断单调性,即可得到的范围,即的范围.【详解】(1)由题可知,,,联立可得.(2)当时,,,有两个极值点,,且,,是方程的两个正根,,,不等式恒成立,即恒成立,,由,,得,,令,,在上是减函数,,故.【点睛】该题考查的是有关导数的问题,涉及到的知识点有导数的几何意义,函数的极值点的个数,构造新函数,应用导数研究函数的值域得到参数的取值范围,属于较难题目.20.(1)证明见解析(2)【解析】
(1)连接,设,连接.通过证明,证得直线平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的正弦值.【详解】(1)连接,设,连接,因为,所以,所以,在中,因为,所以,且平面,故平面.(2)因为,,,,,所以,因为,平面,所以平面,所以,,取所在直线为轴,取所在直线为轴,取所在直线为轴,建立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年梧州货运从业资格考试
- 2025年大连货运从业资格证考试模拟考试题库
- 2025年贵阳道路货运从业资格证模拟考试下载什么软件
- 2025年广州货运从业资格证考试题库及答案详解
- 2025年辽源驾校考试客货运从业资格证考试题库
- 2025年咸阳货运上岗证模拟考试0题
- 2025年商洛货运从业资格证怎么考
- 企业客户服务流程的自动化与智能化
- 从生产自动化到工业4.0智能化改造的技术分析
- 健康生活的绿色选择家养植物的优势与挑战
- 中国慢性肾脏病早期评价与管理指南课件
- 2024-2025学年四年级科学上册第三单元《运动和力》测试卷(教科版)
- 安全漏洞挖掘技术
- 赛码网行测题题库2024
- 中国血液透析用血管通路专家共识(全文)
- 10S507 建筑小区埋地塑料给水管道施工
- DL∕T 5028.4-2015 电力工程制图标准 第4部分:土建部分
- 2024年北京电子科技职业学院高职单招笔试历年职业技能测验典型例题与考点解析含答案
- DL5000-火力发电厂设计技术规程
- 八年级趣味数学100题
- 代收个人款项声明书
评论
0/150
提交评论