2023-2024学年湖南省衡阳市衡阳县第三中学普通高中毕业班第二次质量检查数学试题_第1页
2023-2024学年湖南省衡阳市衡阳县第三中学普通高中毕业班第二次质量检查数学试题_第2页
2023-2024学年湖南省衡阳市衡阳县第三中学普通高中毕业班第二次质量检查数学试题_第3页
2023-2024学年湖南省衡阳市衡阳县第三中学普通高中毕业班第二次质量检查数学试题_第4页
2023-2024学年湖南省衡阳市衡阳县第三中学普通高中毕业班第二次质量检查数学试题_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年湖南省衡阳市衡阳县第三中学普通高中毕业班第二次质量检查数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为定义在上的奇函数,且满足当时,,则()A. B. C. D.2.过双曲线左焦点的直线交的左支于两点,直线(是坐标原点)交的右支于点,若,且,则的离心率是()A. B. C. D.3.不等式组表示的平面区域为,则()A., B.,C., D.,4.已知等比数列的前项和为,且满足,则的值是()A. B. C. D.5.某市气象部门根据2018年各月的每天最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是()A.各月最高气温平均值与最低气温平均值总体呈正相关B.全年中,2月份的最高气温平均值与最低气温平均值的差值最大C.全年中各月最低气温平均值不高于10°C的月份有5个D.从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势6.已知函数(),若函数有三个零点,则的取值范围是()A. B.C. D.7.已知双曲线的一个焦点为,点是的一条渐近线上关于原点对称的两点,以为直径的圆过且交的左支于两点,若,的面积为8,则的渐近线方程为()A. B.C. D.8.为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线时,表示收入完全平等.劳伦茨曲线为折线时,表示收入完全不平等.记区域为不平等区域,表示其面积,为的面积,将称为基尼系数.对于下列说法:①越小,则国民分配越公平;②设劳伦茨曲线对应的函数为,则对,均有;③若某国家某年的劳伦茨曲线近似为,则;④若某国家某年的劳伦茨曲线近似为,则.其中正确的是:A.①④ B.②③ C.①③④ D.①②④9.将函数图象上每一点的横坐标变为原来的2倍,再将图像向左平移个单位长度,得到函数的图象,则函数图象的一个对称中心为()A. B. C. D.10.已知向量,则向量在向量方向上的投影为()A. B. C. D.11.已知a,b是两条不同的直线,α,β是两个不同的平面,且,,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件12.已知,若,则等于()A.3 B.4 C.5 D.6二、填空题:本题共4小题,每小题5分,共20分。13.点在双曲线的右支上,其左、右焦点分别为、,直线与以坐标原点为圆心、为半径的圆相切于点,线段的垂直平分线恰好过点,则该双曲线的渐近线的斜率为__________.14.已知函数,则函数的极大值为___________.15.已知,记,则的展开式中各项系数和为__________.16.已知双曲线的左右焦点为,过作轴的垂线与相交于两点,与轴相交于.若,则双曲线的离心率为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在锐角中,角A,B,C所对的边分别为a,b,c.已知.(1)求的值;(2)当,且时,求的面积.18.(12分)三棱柱中,平面平面,,点为棱的中点,点为线段上的动点.(1)求证:;(2)若直线与平面所成角为,求二面角的正切值.19.(12分)某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数x与烧开一壶水所用时间y的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).表中,.(1)根据散点图判断,与哪一个更适宜作烧水时间y关于开关旋钮旋转的弧度数x的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立y关于x的回归方程;(3)若旋转的弧度数x与单位时间内煤气输出量t成正比,那么x为多少时,烧开一壶水最省煤气?附:对于一组数据,,,…,,其回归直线的斜率和截距的最小二乘估计分别为,.20.(12分)某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败.晋级成功晋级失败合计男16女50合计(1)求图中的值;(2)根据已知条件完成下面列联表,并判断能否有的把握认为“晋级成功”与性别有关?(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为,求的分布列与数学期望.(参考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.02421.(12分)已知数列的前项和为,且满足().(1)求数列的通项公式;(2)设(),数列的前项和.若对恒成立,求实数,的值.22.(10分)已知数列的前项和为,且满足.(1)求数列的通项公式;(2)若,,且数列前项和为,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

由题设条件,可得函数的周期是,再结合函数是奇函数的性质将转化为函数值,即可得到结论.【详解】由题意,,则函数的周期是,所以,,又函数为上的奇函数,且当时,,所以,.故选:C.【点睛】本题考查函数的周期性,由题设得函数的周期是解答本题的关键,属于基础题.2.D【解析】

如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,,结合、可求离心率.【详解】如图,设双曲线的右焦点为,连接,连接并延长交右支于.因为,故四边形为平行四边形,故.又双曲线为中心对称图形,故.设,则,故,故.因为为直角三角形,故,解得.在中,有,所以.故选:D.【点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于的方程,本题属于难题.3.D【解析】

根据题意,分析不等式组的几何意义,可得其表示的平面区域,设,分析的几何意义,可得的最小值,据此分析选项即可得答案.【详解】解:根据题意,不等式组其表示的平面区域如图所示,其中,,

设,则,的几何意义为直线在轴上的截距的2倍,

由图可得:当过点时,直线在轴上的截距最大,即,当过点原点时,直线在轴上的截距最小,即,故AB错误;

设,则的几何意义为点与点连线的斜率,由图可得最大可到无穷大,最小可到无穷小,故C错误,D正确;故选:D.【点睛】本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基础题.4.C【解析】

利用先求出,然后计算出结果.【详解】根据题意,当时,,,故当时,,数列是等比数列,则,故,解得,故选.【点睛】本题主要考查了等比数列前项和的表达形式,只要求出数列中的项即可得到结果,较为基础.5.D【解析】

根据折线图依次判断每个选项得到答案.【详解】由绘制出的折线图知:在A中,各月最高气温平均值与最低气温平均值为正相关,故A正确;在B中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B正确;在C中,全年中各月最低气温平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5个,故C正确;在D中,从2018年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D错误.故选:D.【点睛】本题考查了折线图,意在考查学生的理解能力.6.A【解析】

分段求解函数零点,数形结合,分类讨论即可求得结果.【详解】作出和,的图像如下所示:函数有三个零点,等价于与有三个交点,又因为,且由图可知,当时与有两个交点,故只需当时,与有一个交点即可.若当时,时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|有一个交点𝐵,故满足题意;时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|没有交点,故不满足题意;时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|也没有交点,故不满足题意;时,显然与有一个交点,故满足题意.综上所述,要满足题意,只需.故选:A.【点睛】本题考查由函数零点的个数求参数范围,属中档题.7.B【解析】

由双曲线的对称性可得即,又,从而可得的渐近线方程.【详解】设双曲线的另一个焦点为,由双曲线的对称性,四边形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的渐近线方程为.故选B【点睛】本题考查双曲线的简单几何性质,考查直线与圆的位置关系,考查数形结合思想与计算能力,属于中档题.8.A【解析】

对于①,根据基尼系数公式,可得基尼系数越小,不平等区域的面积越小,国民分配越公平,所以①正确.对于②,根据劳伦茨曲线为一条凹向横轴的曲线,由图得,均有,可得,所以②错误.对于③,因为,所以,所以③错误.对于④,因为,所以,所以④正确.故选A.9.D【解析】

根据函数图象的变换规律可得到解析式,然后将四个选项代入逐一判断即可.【详解】解:图象上每一点的横坐标变为原来的2倍,得到再将图像向左平移个单位长度,得到函数的图象,故选:D【点睛】考查三角函数图象的变换规律以及其有关性质,基础题.10.A【解析】

投影即为,利用数量积运算即可得到结论.【详解】设向量与向量的夹角为,由题意,得,,所以,向量在向量方向上的投影为.故选:A.【点睛】本题主要考察了向量的数量积运算,难度不大,属于基础题.11.C【解析】

根据线面平行的性质定理和判定定理判断与的关系即可得到答案.【详解】若,根据线面平行的性质定理,可得;若,根据线面平行的判定定理,可得.故选:C.【点睛】本题主要考查了线面平行的性质定理和判定定理,属于基础题.12.C【解析】

先求出,再由,利用向量数量积等于0,从而求得.【详解】由题可知,因为,所以有,得,故选:C.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】如图,是切点,是的中点,因为,所以,又,所以,,又,根据双曲线的定义,有,即,两边平方并化简得,所以,因此.14.【解析】

对函数求导,通过赋值,求得,再对函数单调性进行分析,求得极大值.【详解】,故解得,,令,解得函数在单调递增,在单调递减,故的极大值为故答案为:.【点睛】本题考查函数极值的求解,难点是要通过赋值,求出未知量.15.【解析】

根据定积分的计算,得到,令,求得,即可得到答案.【详解】根据定积分的计算,可得,令,则,即的展开式中各项系数和为.【点睛】本题主要考查了定积分的应用,以及二项式定理的应用,其中解答中根据定积分的计算和二项式定理求得的表示是解答本题的关键,着重考查了运算与求解能力,属于基础题.16.【解析】

由已知可得,结合双曲线的定义可知,结合,从而可求出离心率.【详解】解:,,又,则.,,,即解得,即.故答案为:.【点睛】本题考查了双曲线的定义,考查了双曲线的性质.本题的关键是根据几何关系,分析出.关于圆锥曲线的问题,一般如果能结合几何性质,可大大减少计算量.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)【解析】

(1)利用二倍角公式求解即可,注意隐含条件.(2)利用(1)中的结论,结合正弦定理和同角三角函数的关系易得的值,又由求出的值,最后由正弦定理求出的值,根据三角形的面积公式即可计算得出.【详解】(1)由已知可得,所以,因为在锐角中,,所以(2)因为,所以,因为是锐角三角形,所以,所以.由正弦定理可得:,所以,所以【点睛】此类问题是高考的常考题型,主要考查了正弦定理、三角函数以及三角恒等变换等知识,同时考查了学生的基本运算能力和利用三角公式进行恒等变换的技能,属于中档题.18.(1)见解析;(2)【解析】

(1)可证面,从而可得.(2)可证点为线段的三等分点,再过作于,过作,垂足为,则为二面角的平面角,利用解直角三角形的方法可求.也可以建立如图所示的空间直角坐标系,利用两个平面的法向量来计算二面角的平面角的余弦值,最后利用同角三角函数的基本关系式可求.【详解】证明:(1)因为为中点,所以.因为平面平面,平面平面,平面,所以平面,而平面,故,又因为,所以,则,又,故面,又面,所以.(2)由(1)可得:面在面内的射影为,则为直线与平面所成的角,即.因为,所以,所以,所以,即点为线段的三等分点.解法一:过作于,则平面,所以,过作,垂足为,则为二面角的平面角,因为,,,则在中,有,所以二面角的平面角的正切值为.解法二:以点为原点,建立如图所示的空间直角坐标系,则,设点,由得:,即,,,点,平面的一个法向量,又,,设平面的一个法向量为,则,令,则平面的一个法向量为.设二面角的平面角为,则,即,所以二面角的正切值为.【点睛】线线垂直的判定可由线面垂直得到,也可以由两条线所成的角为得到,而线面垂直又可以由面面垂直得到,解题中注意三种垂直关系的转化.空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.19.(1)更适宜(2)(3)x为2时,烧开一壶水最省煤气【解析】

(1)根据散点图是否按直线型分布作答;(2)根据回归系数公式得出y关于的线性回归方程,再得出y关于x的回归方程;(3)利用基本不等式得出煤气用量的最小值及其成立的条件.【详解】(1)更适宜作烧水时间y关于开关旋钮旋转的弧度数x的回归方程类型.(2)由公式可得:,,所以所求回归方程为.(3)设,则煤气用量,当且仅当时取“”,即时,煤气用量最小.故x为2时,烧开一壶水最省煤气.【点睛】本题考查拟合模型的选择,回归方程的求解,涉及均值不等式的使用,属综合中档题.20.(1);(2)列联表见解析,有超过的把握认为“晋级成功”与性别有关;(3)分布列见解析,=3【解析】

(1)由频率和为1,列出方程求的值;(2)由频率分布直方图求出晋级成功的频率,计算晋级成功的人数,填写列联表,计算观测值,对照临界值得出结论;(3)由频率分布直方图知晋级失败的频率,将频率视为概率,知随机变量服从二项分布,计算对应的概率值,写出分布列,计算数学期望.【详解】解:(1)由频率分布直方图各小长方形面积总和为1,可知,解得;(2)由频率分布直方图知,晋级成功的频率为,所以晋级成功的人数为(人),填表如下:晋级成功晋级失败合计男163450女94150合计25751

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论