版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省汕头市潮阳区高中2025届高二上数学期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆的方程为,直线:恒过定点,若一条光线从点射出,经直线上一点反射后到达圆上的一点,则的最小值是()A.3 B.4C.5 D.62.已知角为第二象限角,,则的值为()A. B.C. D.3.圆与圆公切线的条数为()A.1 B.2C.3 D.44.已知椭圆与双曲线有相同的焦点,且它们的离心率之积为1,则椭圆的标准方程为()A. B.C. D.5.在四棱锥中,底面是正方形,为的中点,若,则()A B.C. D.6.命题:“∃x<1,x2<1”的否定是()A.∀x≥1,x2<1 B.∃x≥1,x2≥1C.∀x<1,x2≥1 D.∃x<1,x2≥17.将一个表面积为的球用一个正方体盒子装起来,则这个正方体盒子的最小体积为()A. B.C. D.8.若存在过点(0,-2)的直线与曲线和曲线都相切,则实数a的值是()A.2 B.1C.0 D.-29.已知圆,则圆C关于直线对称的圆的方程为()A. B.C. D.10.“,”的否定是A., B.,C., D.,11.设是双曲线与圆在第一象限的交点,,分别是双曲线的左,右焦点,若,则双曲线的离心率为()A. B.C. D.12.已知空间直角坐标系中的点,,,则点P到直线AB的距离为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若a,b,c都为正数,,且,,成等比数列,则的最大值为____________.14.已知双曲线的两条渐近线的夹角为,则双曲线的实轴长为____15.设函数满足,则______.16.已知、均为正实数,且,则的最小值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,数列为等差数列,,前4项和.(1)求数列,的通项公式;(2)求和:.18.(12分)已知函数(1)填写函数的相关性质;定义域值域零点极值点单调性性质(2)通过(1)绘制出函数的图像,并讨论方程解的个数19.(12分)已知圆,直线,直线l与圆C相交于P,Q两点(1)求的最小值;(2)当的面积最大时,求直线l的方程20.(12分)已知圆:与直线:.(1)证明:直线过定点,并求出其坐标;(2)当时,直线l与圆C交于A,B两点,求弦的长度.21.(12分)已知数列是首项为1,公差不为0的等差数列,且成等比数列.数列的前项的和为,且满足.(1)求数列的通项公式;(2)求数列的前项和.22.(10分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率)(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求得定点,然后得到关于直线对称点为,然后可得,计算即可.【详解】直线可化为,令解得所以点的坐标为.设点关于直线的对称点为,则由,解得,所以点坐标为.由线段垂直平分线的性质可知,,所以(当且仅当,,,四点共线时等号成立),所以的最小值为4.故选:B.2、C【解析】由同角三角函数关系可得,进而直接利用两角和的余弦展开求解即可.【详解】∵,是第二象限角,∴,∴.故选:C.3、D【解析】分别求出圆和圆的圆心和半径,判断出两圆的位置关系可得到公切线的条数.【详解】根据题意,圆即,其圆心为,半径;圆即,其圆心为,半径;两圆的圆心距,所以两圆相离,其公切线条数有4条;故选:D.4、A【解析】计算双曲线的焦点为,离心率,得到椭圆的焦点为,离心率,计算得到答案.【详解】双曲线的焦点为,离心率,故椭圆的焦点为,离心率,即.解得,故椭圆标准方程为:.故选:.【点睛】本题考查了椭圆和双曲线的离心率,焦点,椭圆的标准方程,意在考查学生的计算能力.5、C【解析】由为的中点,根据向量的运算法则,可得,即可求解.【详解】由底面是正方形,E为的中点,且,根据向量的运算法则,可得.故选:C.6、C【解析】将特称命题否定为全称命题即可【详解】根据含有量词的命题的否定,则“∃x<1,x2<1”的否定是“∀x<1,x2≥1”.故选:C.7、C【解析】求出球的半径,要使这个正方形盒子的体积最小,则这个正方体正好是该球的外切正方体,所以正方体的棱长等于球的直径,从而可得出答案.【详解】解:设球的半径为,则,得,故该球的半径为11cm,若要使这个正方形盒子的体积最小,则这个正方体正好是该球的外切正方体,所以正方体的棱长等于球的直径,即22cm,所以这个正方体盒子的最小体积为.故选:C.8、A【解析】在两曲线上设切点,得到切线,又因为(0,-2)在两条切线上,列方程即可.【详解】的导函数为,的导函数为,若直线与和的切点分别为(,),,∴过(0,-2)的直线为、,则有,可得故选:A.9、B【解析】求得圆的圆心关于直线的对称点,由此求得对称圆的方程.【详解】设圆的圆心关于直线的对称点为,则,所以对称圆的方程为.故选:B10、D【解析】通过命题的否定的形式进行判断【详解】因为全称命题的否定是特称命题,故“,”的否定是“,”.故选D.【点睛】本题考查全称命题的否定,属基础题.11、B【解析】先由双曲线定义与题中条件得到,,求出,,再由题意得到,即可根据勾股定理求出结果.【详解】解:根据双曲线定义:,,∴,∴,,,∴是圆的直径,∴,中,,得故选【点睛】本题主要考查求双曲线的离心率,熟记双曲线的简单性质即可,属于常考题型.12、D【解析】由向量在向量上的投影及勾股定理即可求.【详解】,0,,,1,,,,,,在上的投影为,则点到直线的距离为.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由等比数列性质知,即可得,再利用基本不等式求解即可.【详解】由,,成等比数列,得,即又,则,所以,即,即所以,当且仅当时,等号成立,故的最大值为故答案为:14、【解析】根据已知条件求得,由此求得实轴长.【详解】由于,双曲线的渐近线方程为,所以双曲线的渐近线与轴夹角小于,由得,实轴长故答案为:15、5【解析】考点:函数导数与求值16、【解析】由基本不等式可得出关于的不等式,即可解得的最小值.【详解】因、均为正实数,由基本不等式可得,整理可得,,,则,解得,当且仅当时,即当时,等号成立,故的最小值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)根据等比数列的定义,结合等差数列的基本量,即可容易求得数列,的通项公式;(2)根据(1)中所求,构造数列,证明其为等比数列,利用等比数列的前项和即可求得结果.【小问1详解】因为数列满足,故可得数列为等比数列,且公比,则;数列为等差数列,,前4项和,设其公差为,故可得,解得,则;综上所述,,.【小问2详解】由(1)可知:,,故,又,又,则是首项1,公比为的等比数列;则.18、(1)详见解析(2)详见解析【解析】(1)利用导数判断函数的性质;(2)由函数性质绘制函数的图象,并将方程转化为,即转化为与的交点个数.【小问1详解】函数的定义域是,,当时,,函数单调递增,当时,,函数单调递减,所以当时,函数取得极大值,同时也是函数的最大值,,当时,,当时,,函数的值域是,,得,所以函数的零点是,定义域值域零点极值点单调性性质单调递增区间,单调递减区间【小问2详解】函数的图象如图,,即,方程解的个数,即与的交点个数,当时,无交点,即方程无实数根;当或时,有一个交点,即方程有一个实数根;当时,有两个交点,即方程有两个实数根.19、(1)4;(2)或.【解析】(1)过定点D(4,2),当CD⊥l时,|PQ|最小;(2),当时,△CPQ面积最大,此时△CPQ为等腰直角三角形,圆心到直线l的距离,据此即可求出m.【小问1详解】由,得,由,∴直线l过定点D(4,2),∵,∴在圆C内部,∴直线和l与圆C相交,当CD⊥l时,|PQ|最小,;【小问2详解】∵,∴当时,△CPQ面积最大,此时△CPQ为等腰直角三角形,故圆心到直线l的距离,∴,解得,∴此时l的方程为:或.20、(1)证明见解析,(2)【解析】(1)将直线方程化为,解方程得出定点;(2)求出圆心到直线的距离,再由几何法得出弦长.【小问1详解】证明:因为直线,所以.令,解得,所以不论取何值,直线必过定点【小问2详解】当时,直线为,圆心圆心到直线的距离,则21、(1),(2)【解析】(1)设数列公差为,由成等比数列求得,可得.利用求得;(2)利用错位相减求和即可.【小问1详解】设数列公差为,由成等比数列有:,解得:,所以,数列,当即,,解得:,当时,有,所以,得:.又,所以数列为以为首项,公比为的等比数列,所以数列的通项公式为:.【小问2详解】,,,得,,化简得:.22、(1)V(r)=(300r﹣4r3)(0,5)(2)见解析【解析】(1)先由圆柱的侧面积及底面积计算公式计算出侧面积及底面积,进而得出总
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年牙科种植转诊及术后康复服务合作协议2篇
- 2024年度商业地产单位房屋买卖合同范本3篇
- 高二校园安全教育
- 2024年标准外派服务协议范本版B版
- 消费者行为分析-第4篇-洞察分析
- 衍生品交易机制创新-洞察分析
- 土壤胶体结构优化-洞察分析
- 2024年标准化建筑基础结构检测服务协议版
- 2024年度汽车配件区域代理商合作协议书范本3篇
- 线上线下观影体验对比-洞察分析
- 20567-5纳税筹划-教案及讲稿
- 部编版三年级上册作文评价表
- 2019MATLAB-Simulink电力系统建模与仿真第2版
- 绘本故事:睡睡镇
- BMW销售流程培训教材课件
- 煤炭入股合伙人协议书
- 普通铣床操作规程
- 导尿管相关尿路感染防控措施实施情况督查表
- 三甲医院评审护理院感组专家现场访谈问题梳理(护士)
- 家庭、私有制和国家的起源
- 中职《数学》课程思政教学案例(一等奖)
评论
0/150
提交评论