




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AproductoftheUSAID-NRELPartnershipContractNo.IAG-19-2115
ENABLINGFLOATINGSOLAR
PHOTOVOLTAIC(FPV)DEPLOYMENT
FPVTechnicalPotentialAssessmentforSoutheastAsia
PrateekJoshi,EvanRosenlieb,andSikaGadzanku
NationalRenewableEnergyLaboratory
May2023
NREL/TP-5R00-84921
NOTICE
ThisworkwasauthoredbytheNationalRenewableEnergyLaboratory(NREL),operatedbyAllianceforSustainableEnergy,LLC,fortheU.S.DepartmentofEnergy(DOE)underContractNo.DE-AC36-08GO28308.FundingprovidedbytheUnitedStatesAgencyforInternationalDevelopment(USAID)underInteragencyAgreementNo.IAG-19-2115.TheviewsexpressedinthisreportdonotnecessarilyrepresenttheviewsoftheDOEortheU.S.Government,oranyagencythereof,includingUSAID.
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at/publications.
U.S.DepartmentofEnergy(DOE)reportsproducedafter1991andagrowingnumberofpre-1991documentsareavailable
freeviawww.OSTI.gov.
CoverphotofromiStock12776646.
NRELprintsonpaperthatcontainsrecycledcontent.
iii
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at/publications.
Acknowledgments
TheauthorsthankScottBartosfromtheU.S.AgencyforInternationalDevelopment(USAID)’sRegional
DevelopmentMissionforAsia(RDMA)forfundingthisworkandprovidingguidanceduringits
development.Throughoutthedatacollectionandscenariodevelopmentstagesofthisstudy,theauthorsbenefitedfrominformativediscussionsandcorrespondencewith:ApisomIntralawan(MaeFahLuangUniversity),EddyBlokken(SolarEnergyResearchInstituteofSingapore),BrianEylerandCourtney
Weatherby(StimsonCenter),NoahKittner(UniversityofNorthCarolinaatChapelHill),andGunjanGautam(WorldBank).Wealsowishtothankseveralindividualsfortheirpeerreviews,detailed
comments,insights,andcontributionstothisreport:GunjanGautam,CourtneyWeatherby,Donna
Heimiller(NREL),AlicenKandt(NREL),andAdamWarren(NREL).Finally,wewouldliketothank
LizBreazealeforeditorialassistance.Anyerrorsandomissionsarethesoleresponsibilityoftheauthors.
iv
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at/publications.
ListofAcronyms
ASEAN
AssociationofSoutheastAsianNations
EIA
UnitedStatesEnergyInformationAdministration
FPV
floatingsolarphotovoltaic
GW
gigawatt
GWh
gigawatt-hour
GRanD
GlobalReservoirandDamDatabase
IEA
InternationalEnergyAgency
IRENA
InternationalRenewableEnergyAgency
MW
megawatt
NREL
NationalRenewableEnergyLaboratory
PV
photovoltaic
RDMA
RegionalDevelopmentMissionforAsia
RE
renewableenergy
SAM
SystemAdvisorModel
SEAsia
SoutheastAsia
SERIS
SolarEnergyResearchInstituteofSingapore
TWh
terawatt-hour
USAID
UnitedStatesAgencyforInternationalDevelopment
v
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at/publications.
ExecutiveSummary
SoutheastAsia(SEAsia)isaregionwithgrowingenergydemandandincreasingdevelopmentoffloatingsolarphotovoltaic(FPV)systems,whichcanhelpmeetcountries’renewableenergy(RE)andenergy
securitygoals.TheAssociationofSoutheastAsianNations(ASEAN)hassetaregionaltargetof35%REininstalledpowercapacityby2025(ASEAN2022),andFPVisanincreasinglypopularoptiontohelp
meetthisobjective.Forinstance,FPVdevelopmentcanavoidsomeofthechallengesfacedbyground-mountPVsuchascompetinglanduse,andcantakeadvantageofthesignificantexistingandplannedhydropowercapacityintheregionviaco-locationandhybridization.
Thisstudyusesahigh-levelgeospatialassessmentmethodologytoestimatethetechnicalpotentialfor
monofacialandbifacialFPVonreservoirsandnaturalwaterbodiesinthe10countrieswithinASEAN.
TechnicalpotentialconsistsofthesuitablewaterbodyareaforFPVdevelopment(km2),thecapacityof
FPVthatcouldbeinstalledonthissuitablearea(MW),andtheannualenergythatcouldbegenerated
fromtheseinstallations(GWh/year).Thisfirst-of-its-kindFPVtechnicalpotentialassessmentforSEAsiacanhelppolicymakersandplannersbetterunderstandtherolethatFPVcouldplayinmeetingregional
energydemandandcouldultimatelyhelpinforminvestmentdecisions.High-levelresultsforFPV
technicalpotentialinSEAsia,underavarietyofassumptions,arevisualizedin
FigureES-1
forreservoirsand
FigureES-2
fornaturalwaterbodies.
FigureES-1.FPVgenerationandcapacitytechnicalpotentialforreservoirsinSEAsia
Note:Theseresultsassumefixed-tiltmonofacialFPVpanels,witha50-mminimumdistance-from-shoreand1,000-mmaximum
distance-from-shorebuffer.Thedatasetexcludeswaterbodiesthataremorethan50kmfrommajorroadsandwaterbodiesthat
arewithinprotectedareas.Theseresultsdonotreflectafilterfordistance-from-transmission.
Atotalof7,301waterbodieswereincludedinthefinaldatasetforSEAsia,whichexcludeswaterbodiesthataremorethan50kmfrommajorroadsandwaterbodiesthatarewithinprotectedareas.Ofthistotal,therewere88reservoirs(includinghydropowerandnon-hydropower)and7,213naturalwaterbodies.Fortheregion,FPVtechnicalpotentialrangesfrom134–278GWonreservoirsand343–768GWonnaturalwaterbodiesbasedonthemethodology,assumptions,availabledata,anddistance-from-shoresensitivities
vi
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at/publications.
thataredescribedingreaterdetailthroughoutthereport.FormonofacialFPV,averagenetcapacityfactorsrangefrom15.6–16.0%andvarybycountryandwaterbodytype.
Inourmediansensitivitycase(50mminimumdistance-from-shoreand1,000mmaximumdistance-
from-shore),thistranslatestoroughly825GWofFPVpotentialacrossbothwaterbodytypesexamined.Undercurrentpolicies,theinstalledcapacityofrenewablesinASEANcountriesisexpectedtoreach235GWby2030,with81GWofutility-scalesolar,and1,311GWby2050,with841GWofutility-scale
solar(IRENAandASEANCentreforEnergy2022).Thus,FPVcanplayanimportantroleintheregion’srenewableenergybuildout.
FigureES-2.FPVgenerationandcapacitytechnicalpotentialfornaturalwaterbodiesinSEAsia
Note:Theseresultsassumefixed-tiltmonofacialFPVpanels,witha50-mminimumdistance-from-shoreand1,000-mmaximum
distance-from-shorebuffer.Thedatasetexcludeswaterbodiesthataremorethan50kmfrommajorroadsandwaterbodiesthat
arewithinprotectedareas.Theseresultsdonotreflectafilterfordistance-from-transmission.
Country-specificresultsforFPVtechnicalpotentialarediscussedinthereportanddifferinlevelofdetail
basedonavailabledata.Forinstance,transmissionlinedatawasonlyavailableforCambodia,Laos,
Myanmar,thePhilippines,Thailand,andVietnam.Forthesecountries,asecondsetofresultsfor
technicalpotentialwasalsogeneratedbyexcludingwaterbodiesmorethan25kmfromatransmissionline;althoughforsiteswithlargeFPVtechnicalpotential,a25kmdistancefromthetransmissionlinemightnotbeabarriertodevelopment.Thistransmissionlinefilterdoesnotsignificantlyimpactthe
technicalpotentialresultsforreservoirs,andtheimpactfornaturalwaterbodiesvariesbycountry.
ThoughthisworkfocusesonSEAsia,themethodologyforcalculatingFPVtechnicalpotentialmight
alsobeapplicableforcountriesinotherregions,withadaptations.Duetodatalimitations,theseresultscanbeviewedasaconservative,upper-boundestimateofFPVtechnicalpotentialintheregion.Site-
specificdataonwindandwaves,bathymetry,seasonalvariationinwaterlevels,andsedimentationwerenotavailableonascalethatwouldallowforconsistentandreproduceablecountry-andregion-wide
geospatialanalysis.Rather,thisstudyisintendedasastartingpointforfurtheranalysisandtoprovide
vii
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at/publications.
somedata-driveninsightstohelpclarifythepotentialroleofFPVinmeetingSEAsia’selectricitydemand,sustainabilitytargets,andenergysecurityobjectives.
Theprimaryintendedaudiencesforthisworkinclude:
1.DecisionmakerswithinenergyministriesandutilitiesconsideringthepotentialforFPVtosupportbroaderenergyanddevelopmentgoals
2.EnergysystemmodelerstaskedwithexploringandquantifyingthepotentialvaluethatFPVinstallationsmayprovidewithinaspecificenergysystem
3.DevelopersthatmightbeinterestedinbuildingFPVintheSEAsiaregion
viii
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at/publications.
TableofContents
1Introduction 1
1.1FPVBackground 2
1.2RelevantPriorResearch 2
2Methods 4
2.1DataCollection 4
2.2ScenarioDevelopment 5
2.3TechnicalPotentialCalculation 6
2.3.1FPVSuitableArea 6
2.3.2FPVCapacityandGeneration 7
3Findings 9
3.1SummaryofRegionalResults 9
3.2SummaryofCountry-SpecificResults 10
4Discussion 13
4.1SEAsiaContext 13
4.1.1WaterbodyType 13
4.1.2FPVTechnologyType 13
4.2Country-SpecificResults 13
4.2.1Brunei 14
4.2.2Cambodia 15
4.2.3Indonesia 16
4.2.4Laos 17
4.2.5Malaysia 18
4.2.6Myanmar 18
4.2.7Philippines 19
4.2.8Singapore 20
4.2.9Thailand 21
4.2.10Vietnam 22
5Conclusion 24
References 25
Appendix 32
BruneiResults 32
CambodiaResults 33
IndonesiaResults 34
LaosResults 35
MalaysiaResults 36
MyanmarResults 37
PhilippinesResults 38
SingaporeResults 39
ThailandResults 40
VietnamResults 41
ix
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at/publications.
ListofFigures
FigureES-1.FPVgenerationandcapacitytechnicalpotentialforreservoirsinSEAsia v
FigureES-2.FPVgenerationandcapacitytechnicalpotentialfornaturalwaterbodiesinSEAsia vi
Figure1.CountriesincludedintheFPVtechnicalpotentialassessment 1
Figure2.Representativeschematicsofstand-aloneFPV(top)andhybridFPV-hydropower(bottom)
systems 2
Figure3.High-resolutionsolarresourcedataavailableforSEAsia 3
Figure4.WaterbodyandFPVtechnologytypesincludedinanalysisscenarios 5
Figure5.FPVgenerationandcapacitytechnicalpotentialforreservoirsinSEAsia 12
Figure6.FPVgenerationandcapacitytechnicalpotentialfornaturalwaterbodiesinSEAsia 12
Figure7.FPVtechnicalpotentialcapacityinBrunei 14
Figure8.FPVtechnicalpotentialcapacityinCambodia 15
Figure9.FPVtechnicalpotentialcapacityinIndonesia 16
Figure10.FPVtechnicalpotentialcapacityinLaos 17
Figure11.FPVtechnicalpotentialcapacityinMalaysia 18
Figure12.FPVtechnicalpotentialcapacityinMyanmar 19
Figure13.FPVtechnicalpotentialcapacityinthePhilippines 20
Figure14.FPVtechnicalpotentialcapacityinSingapore 21
Figure15.FPVtechnicalpotentialcapacityinThailand 22
Figure16.FPVtechnicalpotentialcapacityinVietnam 23
ListofTables
Table1.DataAvailabilityforFPVTechnicalPotentialinSEAsia 4
Table2.SelectFPVTechnologyAssumptions 7
Table3.BreakdownofWaterbodyTypesIncludedinFinalDataset 9
Table4.ResultsforallSEAsianCountries 10
Table5.ResultsforIndividualSEAsianCountries 11
1
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at/publications.
1Introduction
SoutheastAsia(SEAsia)isaregionwithgrowingenergydemandandincreasingdevelopmentoffloatingsolarphotovoltaic(FPV)systems.FPVhasemergedasarenewableenergy(RE)optionthatcanhelp
meetcountries’energysecurityandREobjectives,particularlyforthosewithabundantsolarand
reservoirresources.TheAssociationofSoutheastAsianNations(ASEAN)hasaregionaltargetto
achievea35%shareofREininstalledpowercapacityby2025,andindividualcountrieshavesettheir
ownambitiousREanddecarbonizationobjectives(ASEAN2022).FPVisanincreasinglypopular
solutiontohelpmeetthesegoals,asitcanavoidsomeofthechallengesfacedbyground-mountPVsuchascompetinglanduse,andcantakeadvantageofthesignificantexistingandplannedhydropower
capacityintheregionviaco-locationandhybridization.
Thisstudyusesahigh-levelgeospatialassessmentmethodologytoestimatethetechnicalpotentialforFPVinthe10countrieswithinASEAN,displayedin
Figure1.
Technicalpotentialreferstothe
achievablegenerationfromatechnologygivenvariousenvironmental,topographical,andland-use
constraints.Itprovidesanupper-boundestimateforagivenREresourceandtypicallyprecedesmore
detailedeconomicandmarketpotentialanalyses(Lopezetal.2012).FPVtechnicalpotentialassessmentstypicallycharacterizethesuitablewaterbodyareaforFPVdevelopment(km2),thecapacityofFPVthatcouldbeinstalledonthissuitablearea(measuredinmegawatts(MW)),andtheannualenergythatcouldbegeneratedfromtheseinstallations(measuredingigawatt(GW)hoursperyear(GWh/year)).Thisfirst-of-its-kindupper-boundestimateofFPVtechnicalpotentialforSEAsiacanhelppolicymakers,planners,anddecisionmakersbetterunderstandtherolethatFPVcouldplayinmeetingregionalenergydemand.
Figure1.CountriesincludedintheFPVtechnicalpotentialassessment
ThisreportbeginswithabriefbackgroundonFPVtechnologyandoverviewofrelevantpriorresearch(Section
1.1
andSection
1.2)
.Wethendiscussthemethodologyandassumptionsforthestudy(Section
2)
,aswellasthefindingsforsuitablewaterbodyarea,capacity,andgeneration(Section
3)
.Finally,weconcludewithadiscussionofthedifferentscenariosassessedandtherelevanceoftheseresultsforboth
theentireregionandindividualSEAsiancountries(Section
4)
,alongwithconsiderationsfornextstepsandfuturework(Section
5)
.DetailedcountryresultsareprovidedintheaccompanyingAppendix.
2
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at/publications.
1.1FPVBackground
FPVsystemsareagrowingapplicationofsolarphotovoltaics(PV)inwhichthetechnologyissitedon
waterbodiessuchaslakes,reservoirs,andwatertreatmentponds(AcharyaandDevraj2019).Thesolar
panels,whicharethesameasthoseusedinground-mountorrooftopinstallations,aremountedtofloatingstructuresandcanbeinstalledasstand-alonesystemsorsystemshybridizedwithhydropowerdams
(Figure2)
.MoreinformationonFPVcanbefoundintheFloatingSolarHandbookforPractitioners(WorldBankGroup,EnergySectorManagementAssistanceProgram,andSolarEnergyResearch
InstituteofSingapore2019).FPVcanhavenumerousbenefitssuchasreducedland-use,increasedeaseofinstallation,reducedwaterevaporation,andincreasedpanelefficiency(Gadzankuetal.2021a).
Figure2.Representativeschematicsofstand-aloneFPV(top)andhybridFPV-hydropower(bottom)systems
Source:Leeetal.(2020)
1.2RelevantPriorResearch
PrevioustechnicalpotentialassessmentsforFPVhavebeenconductedataglobalscale(Leeetal.2020;Jinetal.2023),focusedonspecificcountriesorregionssuchastheUnitedStates(Spenceretal.2019),
Spain(Lopezetal.2022),Brazil(CamposLopesetal.2022),theEuropeanUnion(Kakoulakietal.2023)andAfrica(GonzalezSanchezetal.2021),orfocusedonspecificsites(Agrawaletal.2022;Popaetal.
2021).Thesetechnicalpotentialassessmentsprimarilyfocusonartificialwaterbodies–mainly
3
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at/publications.
hydropowerreservoirs,withsomefocusonnon-hydropowerreservoirs(e.g.,otherartificialwaterbodiessuchasdrinkingwaterreservoirsorwatertreatmentponds).Hydropowerreservoirsarepromisingsites
forFPVdevelopmentduetoexistingelectricgridinfrastructureandvariousoperationalbenefits,suchaslowerPVcurtailmentwhentransmissioniscongestedandmoreoptimaluseoflimitedwaterresources
(Gadzankuetal.2022).TherehasbeenalimitedfocusonFPVsitedonnaturalwaterbodiessuchas
inlandlakes,partlyduetoconcernsaboutpotentialecologicalimpacts(Exleyetal.2022).Recently,therehasalsobeenmoredevelopmentofFPVsitedoffshoreornearshoreinsaltwater(Voetal.2021).
TheFPVtechnologyinthesepriorassessmentshasbeengenerallylimitedtofixed-tiltmonofacialpanels.However,thereisgrowingresearchandinterestintoFPVsystemsthatutilizebifacialpanelandtrackingtechnologies(HasanandDincer2020;Widayatetal.2020;Ziaretal.2020),bothofwhichhavebecomeincreasinglycommonintheland-basedsolarPVindustry.Bifacialpanelscanabsorbsunlightfrombothsides,therebyincreasingthepoweroutputofthePVinstallation.Trackingtechnologies,whichcanbe1-axisor2-axis,allowthepanelstoadjusttheirtiltandorientationthroughoutthedayinordertomaximizesolarirradiationexposureandconsequentlyenergyproduction.
Duetolimitedlandavailability,substantialpre-existingandplannedhydropowerdevelopment,abundantREresources,andambitiousREtargets,SEAsiancountrieshavesignificantinterestinFPV.Several
countriesintheregion,includingIndonesia,Vietnam,andThailand,aredeployingbothstand-aloneand
hybridFPVsystems.However,barrierstoFPVdeploymentintheregionremain.Theseinclude
economic,environmental,cultural,regulatory,ortechnicalbarriersthatpotentialadoptersmayface(Gadzankuetal.2021b).
ThisstudybuildsoffpreviousresearchbyconductinganFPVtechnicalpotentialassessmentforSEAsia
andexpandingthewaterbodytypesconsideredbyincludingnon-hydropowerreservoirsandinland
naturalwaterbodies,inadditiontohydropowerreservoirs.ThisstudyalsoexpandstheFPVtechnology
typesconsideredbyincludingbifacialPVpanelsinadditiontomonofacialpanels.Finally,thestudyuseshightemporalandspatialresolutionsolarirradiancedataspecificallydevelopedfortheSEAsiaregion
thatwasnotavailableforprevioustechnicalpotentialassessments
(Figure3)
.ThisstudydoesnotconductaneconomicanalysisofFPV,thoughFPVsystemcostestimatesforselectcountriesandtheUnited
StatescanbefoundinChopraandSagardoy(2021)andRamasamyandMargolis(2021),respectively.
Figure3.High-resolutionsolarresourcedataavailableforSEAsia
Source:Maclaurinetal.(2022)
4
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at/publications.
2Methods
2.1DataCollection
Thisstudyrequireddataonwaterbodies,supportinginfrastructure,andenergyresources.WebuiltoffthedatagapassessmentconductedinLeeetal.(2020),narrowingthegeographicscopetofocusonSEAsiaandexpandingthewaterbodyscopetoincludenon-hydropowerreservoirs(e.g.,reservoirsforagriculture,drinkingwater,recreation,orotherpurposesnotrelatedtoelectricitygeneration)andnaturalwaterbodies(e.g.,lakes),inadditiontohydropowerreservoirs(i.e.,reservoirsusedforelectricitygeneration).Wealsousedupdateddatasetswhereavailable.
Table1
summarizestheinputsandthedatasourcesused.
Table1.DataAvailabilityforFPVTechnicalPotentialAssessmentinSEAsia
Input
Data
Available?
DataSource(s)Used
CountriesCovered
DataProvided
Waterbodies
Hydropowerreservoirs
Yes
GlobalReservoirand
DamDatabase(GRanD)
ASEAN
Spatiallocationandextentofwaterbody
Non-hydropowerreservoirs
Yes
GranD
ASEAN
Spatiallocationandextentofwaterbody
Natural
waterbodies
Yes
HydroLAKESDatabase
ASEAN
Spatiallocationandextentofwaterbody
Bathymetry
No
N/A
N/A
Waterbodydepth,includingseasonalvariations
Sedimentation
No
N/A
N/A
Rateofsedimentdepositstoestimatesite’sFPVviability
Waves
No
N/A
N/A
Waveheightandfrequencytoestimateimpactonpanels
Wind
No
N/A
N/A
Windspeedanddirectiontoestimatewindloadsonpanels
Protectedareas
Yes
REDataExplorer
ASEAN
Nationalparks,conservationareas,wildlifesanctuaries,etc.
SupportingInfrastructure
Transmissionlines
Yes
REDataExplorer,
StimsonMekong
InfrastructureTracker
Cambodia,Laos,Myanmar,the
Philippines,
Thailand,Vietnam
Spatiallocationsoftransmissionnetwork
Majorroads
Yes
REDataExplorer
ASEAN
Spatiallocationsofmajorroads
EnergyResource
Solarresource
Yes
REDataExplorer
ASEAN
Globalhorizontalirradiance,directnormalirradiance,etc.
Waterresource
No
N/A
N/A
Historicalannualvariationsinwaterresourceacrossseasons
Dataonprotectedareas,transmissionlines,majorroads,andsolarresourcesareaggregatedfromvarious
5
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at/publications.
primarysourcesandcanbedownloadedfromREDataExplorer,ageospatialvisualizationandanalysis
tooldevelopedbyUSAIDandNREL.AdditionaltransmissionlinedataissourcedfromtheMekong
InfrastructureTracker(StimsonCenter2020).Dataonhydropowerandnon-hydropowerreservoirsis
fromtheGlobalReservoirandDamDatabase(GDW2019),anddataonnaturalwaterbodiesisfromtheHydroLAKESDatabase(Messageretal.2016).TheGlobalReservoirandDamDatabase(GranD)is
consideredtohavereliabledataonreservoirprimaryuse,althoughthequalityofattributedataonthetypeofreservoircanvarysignificantlyacrosscountriesandtheGranDdatasetmightnotaligncompletelywith
othersourcesofdataonwaterbodiessuchastheMekongInfrastructureTracker.However,weusedthisdatasettoremainconsistentwiththemethodologyinLeeetal.(2020)andbecauseitcoversallthe
ASEANcountries.
Datanotavailableincludewindandwaveinformation,bathymetry,seasonalvariationinwaterlevels,and
sedimentationdataforallwaterbodytypes,alongwithtransmissiondataforcertaincountries.The
analysisdidnotconsiderreservoirattributesindetail,whichcanbeafocusoffutureanalysis.Thesolarresourcedataisbasedoffsatellitemeasurementsandisavailablefrom2015–2019,witha10-minute
temporalresolutionanda2kmx2kmspatialresolution.DetailsonhowthisdatasetwasdevelopedcanbefoundinMaclaurinetal.(2022).
2.2ScenarioDevelopment
Basedontheavailabledata
(Table1)
anddiscussionswithvariousstakeholders,wedevelopedscenariosforthetechnicalpotentialassessmentusingdifferentcombinationsofwaterbodytypesandFPV
technologies.Twodifferentwaterbodytypes(reservoirsandnaturalinlandwaterbodies)arepairedwithtwodifferentFPVtechnologytypes(fixedtilt:monofacialandfixedtilt:bifacial)foratotaloffour
technicalpotentialscenarios.Reservoirsincludebothhydropowerandnon-hydropowerreservoirs.A
summaryofthewaterbodyandFPVtechnologytypesincludedandexcludedfromthescenariosisdisplayedin
Figure4.
Figure4.WaterbodyandFPVtechnologytypesincludedinanalysisscenarios
FPVinstallations,whichtypicallyusemonofacialpanels,areanemergingapplicationforbifacial
technology.Ifbifacialpanelsareused,thedownward-facingpanelcancatchsunlightthatisreflectedoffthesurfaceofthewaterorthefloatingplatform,whichcouldpotentiallybeamplifiedwithinstalled
reflectivedevices,thusincreasingtheelectricityoutputoftheFPVplant(HasanandDincer2020;
Widayatetal.2020;Ziaretal.2020).FPVdevelopersusuallyseektominimizethesizeandcostofthefloatingplatformbyincreasingthepowerdensityoftheinstallation.Usingbifacialpanels,alongwithpackingthepanelsmoretightly,couldhelpaccomplishthisobjective.Generally,themodulepricesfor
6
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at/publications.
bifacialPVpanelsarehigherthanthatofmonofacialpanels.Forinstance,ananalysisbyCleanEnergy
Associatesestimatesthatabifacialmodule’spricecouldbeapproximately3.3%higherthanamonofacialmodule’sprice(Balyon2021).ExactpricedifferencesdependonthePVpanelmanufacturerandthe
country.Furtheranalysisisneededtoassessthetrade-offsbetweenincreasedgenerationversusincreasedmodulepriceforbifacialPVcomparedtomonofacialPVpanels.Suchatechno-economicanalysisis
beyondthescopeofthisreport.
One-axistrackingFPVwasexcludedfromthescenariosfollowingdiscussionswithstakeholders,who
generallyviewedthistechnologyaslessrelevantfortheSEAsiaregionbasedongeographicandcost
considerations(i.e.,one-axistrackingPVtechnologyprovidesasmallerincreaseinenergyproduction
overfixed-tiltPVinregionsclosertotheequatorcomparedtoregionsfurtherfromtheequator,andthissmallerincreaseinenergyproductionmightnotbeenoughtooffsettheincreasedcapitalcostsoftrackingsystems).OffshoreFPVwasexcludedfromthescenariosduetoalackofbothsufficientdataandan
establishedmethodologyforassessingitstechnicalpotential.However,offshoreFPVtechnicalpotentialcouldbeanareaforfutureresearchgiventhatitisanemergingtechnologywithgrowinginterestintheregion.
2.3TechnicalPotentialCalculation
ThissectiondescribesthemethodologyusedforcalculatingFPVtechnicalpotential.Theresultsfromthisassessment,foreachofthescenariosdescribedinSection
2.2,
arepresentedinSection
3.
2.3.1FPVSuitableArea
Inthedataset,weexcludewaterbodiesinprotectedareasandmakeassumptionsaboutthearea
developableforFPVbasedondistancesfromtheshoreandmajorroads,andinsomecases,transmissionlines.Thoughwaterbodiesinprotectedareascouldsometimesdifferfromprotectedwaterbodies,wedidnothavesufficientdatatodistinguishbetweenthetwoandwethustreatthemasequivalentintheinterestofcaution.Forallwaterbodytypes,weapplysensitivitiesforminimum(0,50,and100m)andmaxim
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司爬长城团建登山活动方案
- 公司节假日内部活动方案
- 公司标准化体系策划方案
- 公司策划端午节活动方案
- 公司组织年终滑雪活动方案
- 公司激励活动方案
- 公司组织打球活动方案
- 公司节能减排活动方案
- 公司花样庆祝活动方案
- 公司策划小活动方案
- 机房施工方案及技术措施
- 员工培训矩阵表
- 掼蛋大赛招商方案
- 电影特效制作课件
- 304不锈钢管焊接工艺
- 网络安全教育安全教育
- 医疗器械经销商和代理商法规义务
- 糖尿病专科护士培训学习汇报课件
- 心理健康教育C证面试20个题目参考答案
- 危险化学品库房贮存规定培训课件
- Part 3-4 Unit 7 Invention and Innovation教案-【中职专用】高一英语精研课堂(高教版2021·基础模块2)
评论
0/150
提交评论