版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页湖北省孝感市孝南区八校2025届九上数学开学教学质量检测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若点P(a,b)是正比例函数y=-2A.2a+3b=0 B.2a-3b=0 C.3a+2b=0 D.3a-2b=02、(4分)若式子的值等于0,则x的值为()A.±2 B.-2 C.2 D.-43、(4分)方程的根是A. B. C., D.,4、(4分)下列函数解析式中不是一次函数的是()A. B. C. D.5、(4分)体育课上,某班三名同学分别进行了6次短跑训练,要判断哪一名同学的短跑成绩比较稳定,通常需要比较三名同学短跑成绩的()A.平均数 B.频数 C.方差 D.中位数6、(4分)已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形7、(4分)已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:x﹣10123y51﹣1﹣11则该二次函数图象的对称轴为()A.y轴 B.直线x= C.直线x=1 D.直线x=8、(4分)如图,已知菱形OABC的两个顶点O(0,0),B(2,2),若将菱形绕点O以每秒45°的速度逆时针旋转,则第2019秒时,菱形两对角线交点D的横坐标为()A. B.- C.1 D.﹣1二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)计算:(2+)(2-)=_______.10、(4分)若关于的一元二次方程有一个根为,则________.11、(4分)如图,正比例函数和一次函数的图像相交于点A(2,1).当x>2时,_____________________.(填“>”或“<”)12、(4分)分解因式:________.13、(4分)分解因式xy2+4xy+4x=_____.三、解答题(本大题共5个小题,共48分)14、(12分)某商场销售一批名牌衬衫,平均每天销售20件,每件盈利40元,为了扩大销售,增加盈利减少库存,商场决定采取适当的降价措施,经调查发现,如果每件降价1元,则每天可多售2件.(1)商场若想每天盈利1200元,每件衬衫应降价多少元?(2)问在这次活动中,平均每天能否获得1300元的利润,若能,求出每件衬衫应降多少元;若不能,请说明理由.15、(8分)在▱ABCD中,∠ADC的平分线交直线BC于点E,交直线AB于点F.(1)如图①,证明:BE=BF.(2)如图②,若∠ADC=90°,O为AC的中点,G为EF的中点,试探究OG与AC的位置关系,并说明理由.(3)如图③,若∠ADC=60°,过点E作DC的平行线,并在其上取一点K(与点F位于直线BC的同侧),使EK=BF,连接CK,H为CK的中点,试探究线段OH与HA之间的数量关系,并对结论给予证明.16、(8分)某公司销售人员15人,销售经理为了制定某种商品的月销售定额,统计了这15人某月的销售量如表所示:每人销售量/件1800510250210150120人数113532(1)这15位营销人员该月销售量的中位数是______,众数是______;(2)假设销售部负责人把每位销售人员的月销售额定为210件,你认为是否合理?如不合理,请你制定一个较为合理的销售定额,并说明理由.17、(10分)如图,在正方形ABCD中,点E是BC边所在直线上一动点(不与点B、C重合),过点B作BF⊥DE,交射线DE于点F,连接CF.(1)如图,当点E在线段BC上时,∠BDF=α.①按要求补全图形;②∠EBF=______________(用含α的式子表示);③判断线段BF,CF,DF之间的数量关系,并证明.(2)当点E在直线BC上时,直接写出线段BF,CF,DF之间的数量关系,不需证明.18、(10分)如图,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB,PE与DC交于点O.(基础探究)(1)求证:PD=PE.(2)求证:∠DPE=90°(3)(应用拓展)把正方形ABCD改为菱形,其他条件不变(如图),若PE=3,则PD=________;若∠ABC=62°,则∠DPE=________.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在中,已知,则_______.20、(4分)平面直角坐标系中,A、O两点的坐标分别为(2,0),(0,0),点P在正比例函数y=x(x>0)图象上运动,则满足△PAO为等腰三角形的P点的坐标为_____.21、(4分)如图所示,线段EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F。已知AB=4,BC=5,EF=3,那么四边形EFCD的周长是_____.22、(4分)如图,含有30°的直角三角板△ABC,∠BAC=90°,∠C=30°,将△ABC绕着点A逆时针旋转,得到△AMN,使得点B落在BC边上的点M处,过点N的直线l∥BC,则∠1=______.23、(4分)小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打七折优惠,买练习本所花费的钱数y(元)与练习本的个数x(本)之间的函数关系如图所示,那么图中a的值是_______.二、解答题(本大题共3个小题,共30分)24、(8分)某学校计划在总费用2300元的限额内,租用客车送234名学生和6名教师集体外出活动,每辆客车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如下表所示.甲种客车乙种客车载客量/(人/辆)4530租金/(元/辆)400280(1)共需租多少辆客车?(2)请给出最节省费用的租车方案.25、(10分)如图,请在下列四个论断中选出两个作为条件,推出四边形ABCD是平行四边形,并予以证明(写出一种即可).①AD∥BC;②AB=CD;③∠A=∠C;④∠B+∠C=180°.已知:在四边形ABCD中,____________.求证:四边形ABCD是平行四边形.26、(12分)房山某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下的两个统计图.请根据下面两个不完整的统计图回答以下问题:(1)这次抽样调查中,共调查了名学生;(2)补全两幅统计图;(3)根据抽样调查的结果,估算该校1000名学生中大约有多少人选择“小组合作学习”?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
由函数图象与函数表达式的关系可知,点A满足函数表达式,可将点A的坐标代入函数表达式,得到关于a、b的等式;再根据等式性质将关于a、b的等式进行适当的变形即可得出正确选项.【详解】∵点A(a,b)是正比例函数y=-2∴b=-2∴2a+3b=0.故选A本题考查函数图象上点的坐标与函数关系式的关系,等式的基本性质,能根据等式的基本性质进行适当变形是解决本题的关键.2、C【解析】=0且x²+4x+4≠0,解得x=2.故选C.3、C【解析】
由题意推出x=0,或(x-1)=0,解方程即可求出x的值【详解】,,,故选.此题考查解一元二次方程-因式分解法,掌握运算法则是解题关键4、C【解析】
根据一次函数的定义,可得答案.【详解】A、是一次函数,故A正确;B、是一次函数,故B正确;C、是二次函数,故C错误;D、是一次函数,故D正确;故选:C.本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.5、C【解析】
根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生6次短跑训练成绩的方差.【详解】由于方差能反映数据的稳定性,需要比较这两名学生6次短跑训练成绩的方差.故选C.本题考查了方差,关键是掌握方差所表示的意义,属于基础题,比较简单.6、B【解析】
依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【详解】如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选B.本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.7、D【解析】观察表格可知:当x=0和x=3时,函数值相同,∴对称轴为直线x=.故选D.8、B【解析】
根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标.【详解】解:菱形OABC的顶点O(0,0),B(2,2),得D点坐标为,即(1,1).∴OD=每秒旋转45°,则第2019秒时,得45°×2019,45°×2019÷360=252.375周,OD旋转了252又周,菱形的对角线交点D的坐标为(﹣,0),故选:B.考查菱形的性质及旋转的性质,熟练掌握菱形的性质及中点的坐标公式、中心对称的性质是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】
根据实数的运算法则,利用平方差公式计算即可得答案.【详解】(2+)(2-)=22-()2=4-3=1.故答案为:1本题考查实数的运算,熟练掌握运算法则并灵活运用平方差公式是解题关键.10、4【解析】
根据一元二次方程的解的定义,把x=0代入x2+mx+2m-4=0得到关于m的一次方程2m-4=0,然后解一次方程即可.【详解】把代入,得2m-4=0解得m=2本题考查一元二次方程的解,熟练掌握计算法则是解题关键.11、>【解析】
根据图像即可判断.【详解】解:∵点A(2,1)∴x>2在A点右侧,由图像可知:此时>.故答案为>此题考查的是比较一次函数的函数值,结合图像比较一次函数的函数值是解决此题的关键.12、(a+1)(a-1)【解析】
根据平方差公式分解即可.【详解】(a+1)(a-1).故答案为:(a+1)(a-1).本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.13、x(y+2)2【解析】
原式先提取x,再利用完全平方公式分解即可。【详解】解:原式=,故答案为:x(y+2)2此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题(本大题共5个小题,共48分)14、(1)若商场平均每天要盈利1200元,每件衬衫应降价20元(2)不能.【解析】
(1)设每件衬衫应降价x元,则每件盈利(40﹣x)元,每天可以售出(20+2x),所以此时商场平均每天要盈利(40﹣x)(20+2x)元,根据商场平均每天要盈利=1200元,为等量关系列出方程求解即可.(2)假设能达到,根据商场平均每天要盈利=1300元,为等量关系列出方程,看该方程是否有解,有解则说明能达到,否则不能.【详解】解:(1)设每件衬衫应降价x元,则每件盈利(40﹣x)元,每天可以售出(20+2x),由题意,得(40﹣x)(20+2x)=1200,即:(x﹣10)(x﹣20)=0,解得x1=10,x2=20,为了扩大销售量,增加盈利,尽快减少库存,所以x的值应为20,所以,若商场平均每天要盈利1200元,每件衬衫应降价20元;(2)假设能达到,由题意,得(40﹣x)(20+2x)=1300,整理,得x2﹣30x+250=0,△=302﹣4×1×250=-100<0,∴原方程无解,∴平均每天不能获得1300元的利润.本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系列出方程求解,另外还用到的知识点是“根的判别式”的应用.15、(1)详见解析;(2)GO⊥AC;(3)AH=OH【解析】
(1)根据平行线的性质得出∠E=∠ADF,∠EFB=∠EDC,再利用ED平分∠ADC,即可解答(2)连接BG,AG,根据题意得出四边形ABCD是矩形,再利用矩形的性质,证明△ABG≌△CEG,即可解答(3)连接AK,BK,FK,先得出四边形BFKE是菱形,,再利用菱形的性质证明△KBE,△KBF都是等边三角形,再利用等边三角形的性质得出△ABK≌△CEK,最后利用三角函数即可解答【详解】(1)证明:如图①中,因为四边形ABCD为平行四边形,所以,AD∥EC,AB∥CD,所以,∠E=∠ADF,∠EFB=∠EDC,因为ED平分∠ADC,所以,∠ADF=∠EDC,所以,∠E=∠EFB,所以,BE=BF(2)解:如图⊙中,结论:GO⊥AC连接BG,AG∵四边形ABCD是平行四边形,∠ADC=90°,四边形ABCD是矩形,∠ABC=∠ABE=90°,由(1)可知:BE=BF,∵∠EBF=90°,EG=FG,∴∠E=45°,∠GBF=∠GBE=45°,BG=GE=GF,∵∠DCE=90°∴∠E=∠EDC=45°,∴DC=CE=BA,∵∠ABG=∠E=45°,AB=EC,BG=EG,∴△ABG≌△CEG(SAS),∵GA=GC∴AO=OC.∴GO⊥AC(3)解:如图⊙中,连接AK,BK,FK∵BF=EK,BF∥EK,∴四边形BFKE是平行四边形,∵BF=BE,∴四边形BFKE是菱形,∵边形ABCD是平行四边形,∴∠ADC=∠ABC=60°,∠DCB=∠DAB=120°∴∠EBF=120°,∴∠KBE=∠KBF=60°BF=BE=FK=EK,∴△KBE,△KBF都是等边三角形,∴∠ABK=∠CEK=60°,∠FEB=∠FEK=30∴∠CDE=∠CED=30°∴CD=CE=BA,∵BK=EK,∴△ABK≌△CEK(SAS)∴AK=CK,∠AKB=∠CKB∴∠AKC=∠BKE=60°∴△ACK是等边三角形∵OA=OC,CH=HK∴AK=2OH,AH⊥CK,∴AH=AK·cos30°=AK∴AH=OH.此题考查平行四边形的性质,矩形的判定与性质,全等三角形的判定与性质,等边三角形的判定与性质,解题关键在于作辅助线16、(1)210,210;(2)合理,理由见解析【解析】
(1)根据中位数和众数的定义求解;(2)先观察出能销售210件的人数为能达到大多数人的水平即合理.【详解】解:(1)按大小数序排列这组数据,第7个数为210,则中位数为210;210出现的次数最多,则众数为210;故答案为:210,210;(2)合理;因为销售210件的人数有5人,210是众数也是中位数,能代表大多数人的销售水平,所以售部负责人把每位销售人员的月销售额定为210件是合理的.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.17、(1)①详见解析;②45°-α;③,详见解析;(2),或,或【解析】
(1)①由题意补全图形即可;
②由正方形的性质得出,由三角形的外角性质得出,由直角三角形的性质得出即可;
③在DF上截取DM=BF,连接CM,证明△CDM≌△CBF,得出CM=CF,
∠DCM=∠BCF,得出MF=即可得出结论;(2)分三种情况:①当点E在线段BC上时,DF=BF+,理由同(1)③;②当点E在线段BC的延长线上时,BF=DF+,在BF_上截取BM=DF,连接CM.同(1)③得△CBM≌△CDF得出CM=CF,∠BCM=∠DCF,证明△CMF是等腰直角三角形,得出MF=,即可得出结论;
③当点E在线段CB的延长线上时,BF+DF=,在DF上截取DM=BF,连接CM,同(1)
③得:ACDM≌△CBF得出CM=CF,∠DCM=∠BCF,证明△CMF是等腰直角三角形,得出MF=,即可得出结论.【详解】解:(1)①如图,②∵四边形ABCD是正方形,∴∠ABC=90°,,∴,∵BF⊥DE,∴∠BFE=90°,∴,故答案为:45°-α;③线段BF,CF,DF之间的数量关系是.证明如下:在DF上截取DM=BF,连接CM.如图2所示,∵正方形ABCD,∴BC=CD,∠BDC=∠DBC=45°,∠BCD=90°∴∠CDM=∠CBF=45°-α,∴△CDM≌△CBF(SAS).∴DM=BF,CM=CF,∠DCM=∠BCF.∴∠MCF=∠BCF+∠MCE=∠DCM+∠MCE=∠BCD=90°,∴MF=.∴(2)分三种情况:①当点E在线段BC上时,DF=BF+,理由同(1)③;
②当点E在线段BC的延长线上时,BF=DF+,理由如下:
在BF上截取BM=DF,连接CM,如图3所示,同(1)
③,得:△CBM≌△CDF
(SAS),∴CM=CF,
∠BCM=∠DCF.
∴∠MCF=∠DCF+∠MCD=∠BCM+∠MCD=
∠
BCD=90°,
∴△CMF是等腰直角三角形,
∴MF=,
∴BF=BM+MF=DF+;③当点E在线段CB的延长线上时,BF+DF=;理由如下:在DF上截取DM=BF,连接CM,如图4所示,
同(1)③得:△CDM≌△CBF,∴CM=CF,∠DCM=∠BCF,
∴∠MCF=∠DCF+
∠MCD=
∠DCF+∠BCF=∠BCD=90°,
∴△CMF是等腰直角三
角形,∴MF=,
即DM+DF=,∴BF+DF=;
综上所述,当点E在直线BC上时,线段BF,CF,DF之间的数导关系为:,或,或.此题是四边形的一道综合题,考查正方形的性质,等腰直角三角形的判定及性质,全等三角形的判定及性质,注意解题中分情况讨论避免漏解.18、(1)证明见解析;(2)证明见解析;(3)3,62°.【解析】
(1)由正方形的性质可得DC=BC,∠ACB=∠ACD,利用SAS证明△PBC≌△PDC,根据全等三角形的性质可得PD=PB,又因PE=PB,即可证得PD=PE;(2)类比(1)的方法证明△PBC≌△PDC,即可得∠PDC=∠PBC.再由PE=PB,根据等腰三角形的性质可得∠PBC=∠E,所以∠PDC=∠E.因为∠POD=∠COE,根据三角形的内角和定理可得∠DPO=∠OCE=90º;(3)类比(1)的方法证得PD=PE=3;类比(2)的方法证得∠DPE=∠DCE,由平行线的性质可得∠ABC=∠DCE=62°,由此可得∠DPE=62°.【详解】(1)证明:在正方形ABCD中,DC=BC,∠ACB=∠ACD,在△PBC和△PDC中,∵DC=BC,∠ACB=∠ACD(已证),CP=CP(公共边),∴△PBC≌△PDC.∴PD=PB.又∵PE=PB,∴PD=PE;(2)证明:在正方形ABCD中,DC=BC,∠ACB=∠ACD,在△PBC和△PDC中,∵DC=BC,∠ACB=∠ACD(已证),,CP=CP(公共边)∴△PBC≌△PDC.∴∠PDC=∠PBC.又∵PE=PB,∴∠PBC=∠E.∴∠PDC=∠E.又∵∠POD=∠COE,∴∠DPO=∠OCE=90º;(3)在菱形ABCD中,DC=BC,∠ACB=∠ACD,在△PBC和△PDC中,∵DC=BC,∠ACB=∠ACD(已证),,CP=CP(公共边)∴△PBC≌△PDC.∴∠PDC=∠PBC,PD=PB.又∵PE=PB,∴∠PBC=∠E,PD=PE=3.∴∠PDC=∠E.又∵∠POD=∠COE,∴∠DPE=∠DCE;∵AB∥CD,∠ABC=62°,∴∠ABC=∠DCE=62°,∴∠DPE=62°.故答案为:3,62°.本题考查了正方形的性质、全等三角形的判定与性质、菱形的性质、等边对等角的性质,熟练运用性质证得∠PDC=∠E是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
根据题意,先求出AD的长度,然后相似三角形的性质,得到,即可求出DE.【详解】解:∵,∴,∵,∴,∴,∴,∴;故答案为:.本题考查了相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的性质进行解题.20、(1,1)或(,)或(1,1)【解析】
分OP=AP、OP=OA、AO=AP三种情况考虑:①当OP1=AP1时,△AOP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;③当AO=AP3时,△OAP3为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P3的坐标.综上即可得出结论【详解】∵点A的坐标为(1,0),∴OA=1.分三种情况考虑,如图所示.①当OP1=AP1时,∵∠AOP1=45°,∴△AOP1为等腰直角三角形.又∵OA=1,∴点P1的坐标为(1,1);②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形.∵OP1=OA=1,∴OB=BP1=,∴点P1的坐标为(,);③当AO=AP3时,△OAP3为等腰直角三角形.∵OA=1,∴AP3=OA=1,∴点P3的坐标为(1,1).综上所述:点P的坐标为(1,1)或(,)或(1,1).故答案为:(1,1)或(,)或(1,1).本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及等腰直角三角形的性质,分OP=AP、OP=OA、AO=AP三种情况求出点P的坐标是解题的关键.21、1【解析】
根据平行四边形的性质,得△AOE≌△COF.根据全等三角形的性质,得OF=OE,CF=AE.再根据平行四边形的对边相等,得CD=AB,AD=BC,故FC+ED=AE+ED=AD,根据所推出相等关系,可求四边形EFCD的周长.【详解】解:∵四边形ABCD为平行四边形,
∴AO=OC,AD∥BC,
∴∠EAO=∠FCO,
在△AOE和△COF中,,
∴△AOE≌△COF,
∴OF=OE=1.5,CF=AE,
根据平行四边形的对边相等,得
CD=AB=4,AD=BC=5,
故四边形EFCD的周长=EF+FC+ED+CD=OE+OF+AE+ED+CD=1.5+1.5+5+4=1.
故答案为:1.本题考查了平行四边形的性质,解题的关键是能够根据平行四边形的性质发现全等三角形,再根据全等三角形的性质求得相关线段间的关系.22、30°【解析】试题分析:根据旋转图形的性质可得:AB=AM,∠AMN=∠B=60°,∠ANM=∠C=30°,根据∠B=60°可得:△ABM为等边三角形,则∠NMC=60°,根据平行线的性质可得:∠1+∠ANM=∠NMC=60°,则∠1=60°-30°=30°.23、1.【解析】
根据题意求出当x≥10时的函数解析式,当y=27时代入相应的函数解析式,可以求得相应的自变量a的值,本题得以解决.【详解】解:由题意得每本练习本的原价为:20÷10=2(元),当x≥10时,函数的解析式为y=0.7×2(x-10)+20=1.4x+6,当y=27时,1.4x+6=27,解得x=1,∴a=1.故答案为:1.本题考查一次函数的应用,解题的关键是明确题意可以列出相应的函数关系式,根据关系式可以解答问题.二、解答题(本大题共3个小题,共30分)24、(1)客车总数为6;(1)租4辆甲种客车,1辆乙种客车费用少.【解析】分析:(1)由师生总数为140人,根据“所需租车数=人数÷载客量”算出租载客量最大的客车所需辆数,再结合每辆车上至少要有1名教师,即可得出结论;(1)设租乙种客车x辆,则甲种客车(6﹣x)辆,根据师生总数为140人以及租车总费用不超过1300元,即可得出关于x的一元一次不等式,解不等式即可得出x的值,再设租车的总费用为y元,根据“总费用=租A种客车所需费用+租B种客车所需费用”即可得出y关于x的函数关系式,根据一次函数的性质结合x的值即可解决最值问题.详解:(1)∵(134+6)÷45=5(辆)…15(人),∴保证140名师生都有车坐,汽车总数不能小于6;∵只有6名教师,∴要使每辆汽车上至少要有1名教师,汽车总数不能大于6;综上可知:共需租6辆汽车.(1)设租乙种客车x辆,则甲种客车(6﹣x)辆,由已知得:,解得:≤x≤1.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44943-2024鞋类化学试验方法邻苯基苯酚含量的测定高效液相色谱-串联质谱法
- 2024年度二手住宅交易垫资服务协议
- 2024年度银行信用贷款担保合同范本3篇
- 2024年度金融信托合同样本:实现财富传承与投资增值3篇
- 2024年企业员工离职补偿劳动合同范本3篇
- 2024年度高校与企业产学研合作人才培养与创新创业指导及市场开拓专用协议3篇
- 2024年度高新技术企业员工劳动合同范本及知识产权保护协议3篇
- 2024年度电子元器件贴牌代生产合同3篇
- 2024年商业综合体后勤服务保障委托合同3篇
- 2024年新能源汽车生产与销售战略合作协议
- 老龄办年终工作总结
- 中国古代戏曲的源头-傩戏课件
- 2022男德经守则全部
- 《工程计量》课件
- 2024年度企业网络搭建及应用技能大赛方案
- 2024分娩镇痛ppt课件完整版
- 业委会换届工作交接清单
- 人教版2023-2024学年四年级数学上册典型例题系列 第四单元:行程问题“拓展型”专项练习(解析版)
- 截瘫护理查房范文课件
- 麦凯66表格(完全版)
- 贵州省黔东南州2022-2023学年六年级上学期语文期末考试试卷(含答案)
评论
0/150
提交评论