北京市房山区燕山地区2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】_第1页
北京市房山区燕山地区2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】_第2页
北京市房山区燕山地区2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】_第3页
北京市房山区燕山地区2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】_第4页
北京市房山区燕山地区2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页北京市房山区燕山地区2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列关系不是函数关系的是()A.汽车在匀速行驶过程中,油箱的余油量y(升)是行驶时间t(小时)的函数B.改变正实数x,它的平方根y随之改变,y是x的函数C.电压一定时,通过某电阻的电流强度I(单位:安)是电阻R(单位:欧姆)的函数D.垂直向上抛一个小球,小球离地的高度h(单位:米)是时间t(单位:秒)的函数2、(4分)某学校五个绿化小组一天植树的棵数如下:,,,,,如果这组数据的平均数与众数相等,那么这组数据的中位数是()A. B. C. D.3、(4分)下列算式正确的()A.=1 B.=C.=x+y D.=4、(4分)如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是()A.先把△ABC向左平移5个单位,再向下平移2个单位B.先把△ABC向右平移5个单位,再向下平移2个单位C.先把△ABC向左平移5个单位,再向上平移2个单位D.先把△ABC向右平移5个单位,再向上平移2个单位5、(4分)如图,在中,,,是角平分线,,垂足为点.若,则的长是()A. B. C. D.56、(4分)一次函数y=kx﹣6(k<0)的图象大致是()A. B.C. D.7、(4分)如图,,,,都是正三角形,边长分别为2,,,,且BO,,,都在x轴上,点A,,,从左至右依次排列在x轴上方,若点是BO中点,点是中点,,且B为,则点的坐标是A. B. C. D.8、(4分)在▱ABCD中,已知∠A=60°,则∠C的度数是()A.30° B.60° C.120° D.60°或120°二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,函数y1=ax和y2=-x+b的图象交于点P,则根据图象可得,二元一次方程组的解是______.10、(4分)某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为kg11、(4分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=_____度.12、(4分)请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式_____.13、(4分)分解因式:x2﹣7x=_____.三、解答题(本大题共5个小题,共48分)14、(12分)反比例函数的图像经过、两点.(1)求m,n的值;(2)根据反比例图像写出当时,y的取值范围.15、(8分)观察下列等式:11×2将以上二个等式两边分别相加得:1用你发现的规律解答下列总是:(1)直接写出下列各式的计算结果:①11×2+②11×2(2)仿照题中的计算形式,猜想并写出:1n(3)解方程:116、(8分)如图,已知E、F是平行四边形ABCD对角线AC上的两点,并且AE=CF.请说明四边形BFDE是平行四边形.17、(10分)已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与y轴交于点C.(1)求反比例函数和一次函数的关系式;(2)求△AOC的面积;(3)求不等式kx+b-<0的解集(直接写出答案).18、(10分)如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF为平行四边形;(2)若AB=6cm,BC=10cm,∠B=60°,①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,为的中位线,点在上,且为直角,若,,则的长为__________.20、(4分)如图,△ACB和△DCE都是等腰直角三角形,CA=CB,CD=CE,∠ACB=∠DCE=90°,△ACB的顶点A在△DCE的斜边DE上,且AD=,AE=3,则AC=_____.21、(4分)如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.22、(4分)如图,在菱形ABCD中,AB=5,对角线AC=1.若过点A作AE⊥BC,垂足为E,则AE的长为_________.23、(4分)甲、乙两名同学的5次射击训练成绩(单位:环)如下表.甲78988乙610978比较甲、乙这5次射击成绩的方差S甲1,S乙1,结果为:S甲1_____S乙1.(选填“>”“=”或“<“)二、解答题(本大题共3个小题,共30分)24、(8分)如图,△ABC的面积为63,D是BC上的一点,且BD:BC=2:3,DE∥AC交AB于点E,延长DE到F,使FE:ED=2:1.连结CF交AB点于G.(1)求△BDE的面积;(2)求的值;(3)求△ACG的面积.25、(10分)同学们,我们以前学过完全平方公式,你一定熟悉掌握了吧!现在,我们又学习了二次根式,那么所有非负数都可以看作是一个数的平方,如,,下面我们观察:;反之,;∴;∴.仿上例,求:(1);(2)若,则、与、的关系是什么?并说明理由.26、(12分)如图,在中,,(1)作边的垂直平分线,与、分别相交于点(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结,若,求的度数.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

利用函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量,进而得出答案.【详解】解:A、汽车在匀速行驶过程中,油箱的余油量y(升)是行驶时间t(小时)的函数,故此选项不合题意;B、y表示一个正数x的平方根,y与x之间的关系,两个变量之间的关系不能看成函数关系,故此选项符合题意;C、电压一定时,通过某电阻的电流强度I(单位:安)是电阻R(单位:欧姆)的函数,故本选项不合题意;D、垂直向上抛一个小球,小球离地的高度h(单位:米)是时间t(单位:秒)的函数,故本选项不合题意.故选:B.此题主要考查了函数的定义,正确把握函数定义是解题关键.对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即一一对应.2、C【解析】试题分析:根据数据的特点可知众数为10,因此可得,解得x=10,因此这五个数可按从小到大排列为8、10、10、10、12,因此中位数为10.故选C考点:众数,中位数,平均数3、A【解析】

A、分子(-a+b)2=(a-b)2,再与分母约分即可;B、把分子和分母都除以-1得出结论;C、是最简分式;D、分子和分母同时扩大10倍,要注意分子和分母的每一项都要扩大10倍.【详解】A、==1,所以此选项正确;B、=≠,所以此选项错误;C、不能化简,是最简分式,所以此选项错误;D、=≠,所以此选项错误;故选:A.本题考查了分式的化简,依据是分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变;要注意以下几个问题:①当分子、分母的系数为分数或小数时,应运用分数的基本性质将分式的分子、分母中的系数化为整数,如选项D;②当分子或分母出现完全平方式时,要知道(a-b)2=(b-a)2,如选项A;③当分子和分母的首项系数为负时,通常会乘以-1,化为正数,要注意每一项都乘,不能漏项,如选项B;④因式分解是基础,熟练掌握因式分解,尤其是平方差公式和完全平方公式.4、A【解析】

解:根据网格结构,观察点对应点A、D,点A向左平移5个单位,再向下平移2个单位即可到达点D的位置,所以,平移步骤是:先把△ABC向左平移5个单位,再向下平移2个单位.故选A.5、D【解析】

先解直角三角形求出DE的长度,在根据角平分线上的点到角的两边距离相等可得AD=DE,从而得解.【详解】解:∵AB=AC,∠A=90°,

∴∠C=41°,

∵DE⊥BC,CD=1,

∴DE=CD•sin41°=1×=1,

∵BD是角平分线,DE⊥BC,∠A=90°,

∴AD=DE=1.

故选:D.本题考查了角平分线上的点到角的两边距离相等的性质,等腰直角三角形的性质,难点在于求出DE的长度.6、D【解析】

一次函数y=kx+b中,k的符号决定了直线的方向,b的符号决定了直线与y轴的交点位置,据此判断即可.【详解】∵一次函数y=kx﹣6中,k<0∴直线必经过二、四象限;又∵常数项﹣6<0∴直线与y轴交于负半轴∴直线经过第二、三、四象限故选D.本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.7、C【解析】

根据图形,依次表示各个点A的坐标,可以分别发现横、纵坐标的变化规律,则问题可解.【详解】根据题意点A在边长为2的等边三角形顶点,则由图形可知点A坐标为(-1,)由于等边三角形△A1B1C1,的顶点A1在BO中点,则点A到A1的水平距离为边长2,则点A1坐标为(1,2)以此类推,点A2坐标为(5,4),点A3坐标为(13,8),各点横坐标从-1基础上一次增加2,22,23,…,纵坐标依次是前一个点纵坐标的2倍则点A6的横坐标是:-1+2+22+23+24+25+26=125,纵坐标为:26×=64则点A6坐标是(125,64)故选C.本题是平面直角坐标系下的点坐标规律探究题,考查了等边三角形的性质,应用了数形结合思想.8、B【解析】

由平行四边形的对角相等即可得出答案.【详解】∵四边形ABCD是平行四边形,∴∠C=∠A=60°;故选:B.本题考查了平行四边形的性质;熟练掌握平行四边形的对角相等是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

先根据函数图象确定P点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】解:由图可得,函数y1=ax和y2=-x+b的图象交于点P(2,3),∴二元一次方程组的解是,故答案为:.本题考查了一次函数与二元一次方程(组),解题时注意:方程组的解就是两个相应的一次函数图象的交点坐标.10、20【解析】设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg11、1【解析】分析:连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E度数.详解:连接AC,

∵四边形ABCD是矩形,

∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,

∴∠E=∠DAE,

又∵BD=CE,

∴CE=CA,

∴∠E=∠CAE,

∵∠CAD=∠CAE+∠DAE,

∴∠E+∠E=30°,即∠E=1°,

故答案为1.点睛:本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.12、y=﹣x+1【解析】

分析:由y随着x的增大而减小可得出k<0,取k=-1,再根据一次函数图象上点的坐标特征可得出b=1,此题得解.详解:设该一次函数的解析式为y=kx+b.∵y随着x的增大而减小,∴k<0,取k=﹣1.∵点(0,1)在一次函数图象上,∴b=1.故答案为y=﹣x+1.点睛:本题考查了一次函数的性质以及一次函数图象上点的坐标特征,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.13、x(x﹣7)【解析】

直接提公因式x即可.【详解】解:原式=x(x﹣7),故答案为:x(x﹣7).本题主要考查了因式分解的运用,准确进行计算是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1),;(2)当时,.【解析】

(1)将点,的坐标分别代入已知函数解析式,列出关于m,n的方程组,通过解方程=组来求m,n的值即可;(2)利用(1)中的反比例函数的解析式画出该函数的图象,根据图象直接回答问题.【详解】(1)根据题意,得解得m=−2,n=−2,即m,n的值都是−2.(2)由(1)知,反比例函数的解析式为y=−,其图象如图所示:根据图象知,当−2<x<0时,y>1.本题考查反比例函数的性质,熟练掌握计算法则是解题关键.15、(1)①20182019;②nn+1;(2)131n【解析】

(1)原式各项利用拆项法变形,计算即可得到结果;(2)根据已知等式归纳拆项法则,写出即可;(3)仿照2利用拆项法变形,变一般分式方程解答即可.【详解】(1)①1=1-=1-=2018②11×2(2)∵11×4=13×11-∴1n(3)仿照(2)中的结论,原方程可变形为13即1x-1经检验,x=2是原分式方程的解.故原方程的解为x=2.本题考查了数字的变化规律以及分式方程,学会拆项变形是解题的关键.16、证明见解析.【解析】

连接BD,利用对角线互相平分来证明即可.【详解】证明:连接BD,交AC于点O.∵四边形ABCD是平行四边形∴OA=OCOB=OD(平行四边形的对角线互相平分)又∵AE=CF∴OA﹣AE=OC﹣CF,即OE=OF∴四边形BFDE是平行四边形(对角线互相平分的四边形是平行四边形)本题考查平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质,属于中考常考题型.17、(1)反比例函数关系式:;一次函数关系式:y=1x+1;(1)3;(3)x<-1或0<x<1.【解析】分析:(1)由B点在反比例函数y=上,可求出m,再由A点在函数图象上,由待定系数法求出函数解析式;(1)由上问求出的函数解析式联立方程求出A,B,C三点的坐标,从而求出△AOC的面积;(3)由图象观察函数y=的图象在一次函数y=kx+b图象的上方,对应的x的范围.详解:(1)∵B(1,4)在反比例函数y=上,∴m=4,又∵A(n,-1)在反比例函数y=的图象上,∴n=-1,又∵A(-1,-1),B(1,4)是一次函数y=kx+b的上的点,联立方程组解得,k=1,b=1,∴y=,y=1x+1;(1)过点A作AD⊥CD,∵一次函数y=kx+b的图象和反比例函数y=的图象的两个交点为A,B,联立方程组解得,A(-1,-1),B(1,4),C(0,1),∴AD=1,CO=1,∴△AOC的面积为:S=AD•CO=×1×1=1;(3)由图象知:当0<x<1和-1<x<0时函数y=的图象在一次函数y=kx+b图象的上方,∴不等式kx+b-<0的解集为:0<x<1或x<-1.点睛:此题考查一次函数和反比例函数的性质及图象,考查用待定系数法求函数的解析式,还间接考查函数的增减性,从而来解不等式.18、(1)见解析;(2)①7;②1.【解析】

(1)根据平行四边形的性质得出CF平行ED,再根据三角形的判定方法判定△CFG≌△EDG,从而得出FG=CG,根据平行四边形的判定定理,即可判断四边形CEDF为平行四边形.(2)①过A作AM⊥BC于M,根据直角三角形边角关系和平行四边形的性质得出DE=BM,根据三角形全等的判定方法判断△MBA≌△EDC,从而得出∠CED=∠AMB=90°,根据矩形的判定方法,即可证明四边形CEDF是矩形.②根据题意和等边三角形的性质可以判断出CE=DE,再根据菱形的判定方法,即可判断出四边形CEDF是菱形.【详解】(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,∴△CFG≌△EDG(ASA),∴FG=EG,∴四边形CEDF是平行四边形;(2)①解:当AE=7时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=6,∴BM=3,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=6,BC=AD=10,∵AE=7,∴DE=3=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:7;②当AE=1时,四边形CEDF是菱形,理由是:∵AD=10,AE=1,∴DE=6,∵CD=6,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:1.本题考查了平行四边形、矩形、菱形的判定方法,平行四边形的性质和三角形全等的判定和性质,解决本题的关键是正确理解题意,能够熟练掌握平行四边形、矩形、菱形的判定方法,找到各个量之间存在的关系.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】

根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,结合图形计算即可.【详解】∵DE为△ABC的中位线,∴DE=BC=4(cm),∵∠AFC为直角,E为AC的中点,∴FE=AC=3(cm),∴DF=DE−FE=1(cm),故答案为:1cm.此题考查三角形中位线定理,解题关键在于掌握其性质定义.20、【解析】

由等腰三角形的性质可得AC=BC,DC=EC,∠DCE=∠ACB=90°,∠D=∠CED=45°,可证△ADC≌△BEC,可得AD=BE=,∠D=∠BEC=45°,由勾股定理可求AB=2,即可求AC的长。【详解】证明:如图,连接BE,

∵△ACB和△DCE都是等腰直角三角形

∴AC=BC,DC=EC,∠DCE=∠ACB=90°,∠D=∠CED=45°

∴∠DCA=∠BCE,且AC=BC,DC=EC,

∴△ADC≌△BEC(SAS)

∴AD=BE=,∠D=∠BEC=45°,

∴∠AEB=90°

∴AB==2

∵AB=BC

∴BC=,因为△ACB是等腰直角三角形,所以BC=AC=.本题考查等腰直角三角形的性质、全等三角形的判定和性质,解题的关键是掌握等腰直角三角形的性质、全等三角形的判定和性质.21、1【解析】试题分析:首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.试题解析:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=1.考点:1.菱形的判定与性质;2.矩形的性质.22、【解析】

设BE=x,则CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理表示出AE的平方,列出方程求解并进一步得到AE的长.【详解】设BE=x,则CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理可得:所以解得,所以AE=.考点:1.菱形的性质;2.勾股定理.23、<【解析】

首先求出各组数据的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论