版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页安徽省合肥庐阳区六校联考2024-2025学年九上数学开学达标测试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知边长分别为a、b的长方形的周长为10,面积4,则ab2+a2b的值为()A.10 B.20 C.40 D.802、(4分)设a、b是直角三角形的两条直角边,若该三角形的周长为12,斜边长为5,则ab的值是()A.6 B.8 C.12 D.243、(4分)于反比例函数y=2x的图象,下列说法中,正确的是(A.图象的两个分支分别位于第二、第四象限B.图象的两个分支关于y轴对称C.图象经过点(1,1)D.当x>0时,y随x增大而减小4、(4分)一次函数y=kx+b中,y随x的增大而增大,b>0,则这个函数的图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限5、(4分)已知m、n是正整数,若+是整数,则满足条件的有序数对(m,n)为()A.(2,5) B.(8,20) C.(2,5),(8,20) D.以上都不是6、(4分)如图,点、、、分别是四边形边、、、的中点,则下列说法:①若,则四边形为矩形;②若,则四边形为菱形;③若四边形是平行四边形,则与互相垂直平分;④若四边形是正方形,则与互相垂直且相等.其中正确的个数是()A.1 B.2 C.3 D.47、(4分)一元一次不等式组的解集为x>a,且a≠b,则a与b的关系是()A.a>b B.a<b C.a>b>0 D.a<b<08、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.5环,方差分别为S甲2=0.54,S乙2=A.甲 B.乙 C.丙 D.丁二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)在某次数学测验中,班长将全班50名同学的成绩(得分为整数)绘制成频数分布直方图(如图),从左到右的小长方形高的比为0.6:2:4:2.2:1.2,则得分在70.5到80.5之间的人数为________.10、(4分)已知,则_______.11、(4分)如图,将三角形纸片(△ABC)进行折叠,使得点B与点A重合,点C与点A重合,压平出现折痕DE,FG,其中D,F分别在边AB,AC上,E,G在边BC上,若∠B=25°,∠C=45°,则∠EAG的度数是_____°.12、(4分)已知:,则=_____.13、(4分)直角三角形的两边长分别为3和5,则第三条边长是________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在直角坐标系中,A(﹣1,2),B(﹣4,﹣2).(1)分别作点A,B关于原点的对称点C,D,并写出点C,点D的坐标;(2)依次连接AB,BC,CD,DA,并证明四边形ABCD是平行四边形.15、(8分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠1.(1)若CE=1,求BC的长;(1)求证:AM=DF+ME.16、(8分)码头工人每天往一艘轮船上装载货物,平均每天装载速度y(吨/元)与装完货物所需时间x(天)之间是反比例函数关系,其图象如图所示.(1)求这个反比例函数的表达式;(2)由于紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸货多少吨?(3)若码头原有工人10名,且每名工人每天的装卸量相同,装载完毕恰好用了8天时间,在(2)的条件下,至少需要增加多少名工人才能完成任务?17、(10分)我们知道定理“直角三角形斜边上的中线等于斜边的一半”,这个定理的逆命题也是真命题.(1)请你写出这个定理的逆命题是________;(2)下面我们来证明这个逆命题:如图,CD是△ABC的中线,CD=AB.求证:△ABC为直角三角形.请你写出证明过程.18、(10分)一个多边形的内角和比它的外角和的2倍还大180度,求这个多边形的边数.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)菱形的边长为,,则以为边的正方形的面积为__________.20、(4分)如图,与穿过正六边形,且,则的度数为______.21、(4分)计算的结果是__________.22、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.23、(4分)如图,菱形ABCD的对角线AC、BD相交于点O,M、N分别为边AB、BC的中点,连接MN.若MN=1,BD,则菱形的周长为________.二、解答题(本大题共3个小题,共30分)24、(8分)某通信公司策划了两种上网的月收费方式:收费方式月使用费/元包时上网时间/超时费/(元/)30250.05设每月上网时间为,方式的收费金额分别为(元),(元),如图是与之间函数关系的图象.(友情提示:若累计上网时间不超出包时上网时间,则只收月使用费;若累计上网时间超出包时上网时间,则对超出部分再加收超时费)(1),,;(2)求与之间的函数解析式;(3)若每月上网时间为31小时,请直接写出选择哪种方式能节省上网费.25、(10分)已知:正方形ABCD和等腰直角三角形AEF,AE=AF(AE<AD),连接DE、BF,P是DE的中点,连接AP。将△AEF绕点A逆时针旋转。(1)如图①,当△AEF的顶点E、F恰好分别落在边AB、AD时,则线段AP与线段BF的位置关系为,数量关系为。(2)当△AEF绕点A逆时针旋转到如图②所示位置时,证明:第(1)问中的结论仍然成立。(3)若AB=3,AE=1,则线段AP的取值范围为。26、(12分)化简求值:,从-1,0,1,2中选一个你认为合适的m值代入求值.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
直接利用矩形周长和面积公式得出ab,a+b,进而利用提取公因式法分解因式得出答案.【详解】解:由边长分别为a、b的长方形的周长为10,面积4,.则2(a+b)=10,ab=4,则a+b=5,故ab2+a2b=ab(b+a)=4×5=20.故选:B.本题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.2、C【解析】
由该三角形的周长为12,斜边长为5可知a+b+5=12,再根据勾股定理和完全平方公式即可求出ab的值.【详解】解:∵三角形的周长为12,斜边长为5,∴a+b+5=12,∴a+b=7,①∵a、b是直角三角形的两条直角边,∴a2+b2=52,②由②得a2+b2=(a+b)2﹣2ab=52∴72﹣2ab=52ab=12,故选:C.本题考查勾股定理和三角形的周长以及完全平方公式的运用,解题的关键是熟练掌握勾股定理以及完全平方公式.3、D【解析】
根据反比例函数的性质,k=2>0,函数位于一、三象限,在每一象限y随x的增大而减小.【详解】:A.∵k=2>0,∴它的图象在第一、三象限,故A选项错误;B.图象的两个分支关于y=-x对称,故B选项错误;C.把点(1,1)代入反比例函数y=2x得2≠1,故D.当x>0时,y随x的增大而减小,故D选项正确.故选D.本题考查了反比例函数y=kx(k≠0)的图象及性质,①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随4、D【解析】
先根据一次函数的增减性判断出k的符号,再由一次函数的图象与系数的关系即可得出结论.【详解】解:∵一次函数y=kx+b中,y随x的增大而增大,∴k0.∵b0,∴此函数的图象经过第一、二、三象限,不经过第四象限.故选D.点睛:本题主要考查了一次函数图象与系数的关系,关键在于根据一次函数的增减性判断出k的正负.5、C【解析】
根据二次根式的性质分析即可得出答案.【详解】解:∵+是整数,m、n是正整数,∴m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m,n)为(2,5)或(8,20),故选:C.本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.6、A【解析】
根据三角形中位线定理、平行四边形的判定定理得到四边形EFGH是平行四边形,根据矩形、菱形、正方形的判定定理判断即可.【详解】解:∵E、F分别是边AB、BC的中点,
∴EF∥AC,EF=AC,
同理可知,HG∥AC,HG=AC,
∴EF∥HG,EF=HG,
∴四边形EFGH是平行四边形,若AC=BD,则四边形EFGH是菱形,故①说法错误;
若AC⊥BD,则四边形EFGH是矩形,故②说法错误;若四边形是平行四边形,AC与BD不一定互相垂直平分,故③说法错误;若四边形是正方形,AC与BD互相垂直且相等,故④说法正确;故选:A.本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,掌握三角形中位线定理、平行四边形、矩形、菱形、正方形的判定定理是解题的关键.7、A【解析】
根据不等式组解集的“同大取较大”的原则,a≥b,由已知得a>b.【详解】解:∵的解集为x>a,且a≠b,∴a>b.故选:A.本题考查了不等式组解集的四种情况:①同大取较大,②同小取较小,③小大大小中间找,④大大小小解不了.8、D【解析】
方差越大,则射击成绩的离散程度越大,稳定性也越小;方差越小,则射击成绩的离散程度越小,稳定性越好,由此即可判断.【详解】解:∵S甲2=0.54,S乙2=0.61,S丙2=0.60,S丁2=0.50,
∴丁的方差最小,成绩最稳定,
故选:D.本题考查方差的意义,记住方差越小数据越稳定.二、填空题(本大题共5个小题,每小题4分,共20分)9、20【解析】
所有小长方形高的比为0.6:2:4:2.2:1.2,可以求出得分在70.5到80.5之间的人数的小长方形的高占总高的比,进而求出得分在70.5到80.5之间的人数.【详解】解:人
故答案为:20考查频数分布直方图的制作特点以及反映数据之间的关系,理解各个小长方形的高表示的实际意义,用所占比去乘以总人数就得出相应的人数.10、【解析】
先对变形,得到b=,然后将b=代入化简计算即可.【详解】解:由,b=则故答案为-2.本题考查了已知等式,求另一代数式值的问题;其解答关键在于对代数式进行变形,寻找它们之间的联系11、40°【解析】
依据三角形内角和定理,即可得到∠BAC的度数,再根据折叠的性质,即可得到∠BAE=∠B=25°,∠CAG=∠C=45°,进而得出∠EAG的度数.【详解】∵∠B=25°,∠C=45°,∴∠BAC=180°−25°−45°=110°,由折叠可得,∠BAE=∠B=25°,∠CAG=∠C=45°,∴∠EAG=110°−(25°+45°)=40°,故答案为:40°此题考查三角形内角和定理,折叠的性质,解题关键在于得到∠BAC的度数12、【解析】
直接利用已知用同一未知数表示出x,y,z的值,进而代入化简即可.【详解】∵,∴设x=4a,则y=3a,z=2a,则原式==.故答案为.本题考查了比例的性质,正确用一个未知数表示出各数是解题的关键.13、4或【解析】
由于此题中直角三角形的斜边不能确定,故应分5是直角三角形的斜边和直角边两种情况讨论.【详解】∵直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x,则x==4;②当5是此直角三角形的直角边时,设另一直角边为x,则x==,综上所述,第三边的长为4或,故答案为:4或.本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.注意分类讨论思想的运用.三、解答题(本大题共5个小题,共48分)14、(1)点C,点D的坐标分别为:(1,﹣2),(4,2);(2)见解析.【解析】
(1)直接利用关于原点对称点的性质进而得出答案;(2)利用平行四边形的判定方法得出答案.【详解】(1)解:∵A(﹣1,2),B(﹣4,﹣2),点A,B关于原点的对称点C,D,∴点C,点D的坐标分别为:(1,﹣2),(4,2);(2)证明:∵AD=BC=4+1=5,∵A(﹣1,2),B(﹣4,﹣2),C(1,﹣2),D(4,2);∴AD∥BC,∴四边形ABCD是平行四边形.此题主要考查了旋转变换以及平行四边形的判定,正确把握平行四边形的判定方法是解题关键.15、(1)1;(1)见解析.【解析】试题分析:(1)根据菱形的对边平行可得AB∥CD,再根据两直线平行,内错角相等可得∠1=∠ACD,所以∠ACD=∠1,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度;
(1)先利用“边角边”证明△CEM和△CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明∠1=∠G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明△CDF和△BGF全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证.试题解析:(1)∵四边形ABCD是菱形,
∴AB∥CD,
∴∠1=∠ACD,
∵∠1=∠1,
∴∠ACD=∠1,
∴MC=MD,
∵ME⊥CD,
∴CD=1CE,
∵CE=1,
∴CD=1,
∴BC=CD=1;
(1)AM=DF+ME证明:如图,∵F为边BC的中点,
∴BF=CF=BC,
∴CF=CE,
在菱形ABCD中,AC平分∠BCD,
∴∠ACB=∠ACD,
在△CEM和△CFM中,
∵,
∴△CEM≌△CFM(SAS),
∴ME=MF,
延长AB交DF的延长线于点G,
∵AB∥CD,
∴∠G=∠1,
∵∠1=∠1,
∴∠1=∠G,
∴AM=MG,
在△CDF和△BGF中,
∵∴△CDF≌△BGF(AAS),
∴GF=DF,
由图形可知,GM=GF+MF,
∴AM=DF+ME.16、(1);(2)80吨货物;(3)6名.【解析】
(1)根据题意即可知装载速度y(吨/天)与装完货物所需时间x(天)之间是反比例函数关系,则可求得答案;
(2)由x=5,代入函数解析式即可求得y的值,即求得平均每天至少要卸的货物;
(3)由10名工人,每天一共可卸货50吨,即可得出平均每人卸货的吨数,即可求得答案.【详解】解:(1)设y与x之间的函数表达式为y=,根据题意得:50=,解得k=400,∴y与x之间的函数表达式为y=;(2)∵x=5,∴y=400÷5=80,解得:y=80;答:平均每天至少要卸80吨货物;(3)∵每人一天可卸货:50÷10=5(吨),∴80÷5=16(人),16﹣10=6(人).答:码头至少需要再增加6名工人才能按时完成任务.本题考查了反比例函数的应用,解题的关键是熟练的掌握反比例函数的性质.17、(1)如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形;(2)证明见解析.【解析】
(1)直接得出它的逆命题;(2)先判断出∠A=∠ACD,∠B=∠DCB,最后用三角形的内角和定理,即可求出∠A+∠B=90°,即可得出结论.【详解】解:(1)∵“直角三角形斜边上的中线等于斜边的一半”,∴它逆命题是:如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形,故答案为:如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形;(2)∵CD是△ABC的中线∴AD=BD=AB,∵CD=AB,∴AD=CD=BD∴∠A=∠ACD,∠B=∠DCB,在△ABC中,∠A+∠B+∠ACD+∠DCB=180°∴∠A+∠B+∠A+∠B=180°,∴∠A+∠B=90°,∴∠ACB=∠ACD+∠DCB=90°,∴△ABC为直角三角形.主要考查了直角三角形的性质,等腰三角形的性质,根据命题得出逆命题是解本题的关键.18、这个多边形的边数是1.【解析】试题分析:设这个多边形的边数为n,根据多边形的内角和公式(n﹣2)•180°与外角和定理列出方程,求解即可.试题解析:设这个多边形的边数为n,根据题意,得(n﹣2)×180°=2×360°+180°,解得n=1.故这个多边形的边数是1.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
如图,连接AC交BD于点O,得出△ABC是等边三角形,利用菱形的性质和勾股定理求得BO,得出BD,即可利用正方形的面积解决问题.【详解】解:如图,
连接AC交BD于点O,
∵在菱形ABCD中,∠ABC=60°,AB=BC,AB=4,
∴△ABC是等边三角形∠ABO=30°,AO=2,
∴BO==2,∴BD=2OB=4,
∴正方形BDEF的面积为1.
故答案为1.本题考查菱形的性质,正方形的性质,勾股定理,等边三角形的判定与性质,注意特殊角的运用是解决问题的关键.20、【解析】
根据多边形的内角和公式,求出每个内角的度数,延长EF交直线l1
于点M,利用平行线的性质把∠1搬到∠3处,利用三角形的外角计算出结果【详解】延长EF交直线l1于点M,如图所示∵ABCDEF是正六边形∴∠AFE=∠A=120°∴∠MFA=60°∵11∥12∴∠1=∠3∵∠3=∠2+∠MFA∴∠1﹣∠2=∠MFA=60°故答案为:60°此题主要考查了平行线的性质,关键是掌握两直线平行、内错角相等,同旁内角互补.21、【解析】分析:先根据二次根式的乘法法则进行计算,然后化简后合并即可.详解:==故答案为:.点睛:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22、1.【解析】
∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=BD=12cm,在Rt△ACB中,AB===13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案为1.考点:旋转的性质.23、8【解析】
由三角形中位线的性质可求出AC的长,根据菱形的性质可得OA、OB的长,利用勾股定理可求出AB的长,即可求出菱形的周长.【详解】∵M、N分别为边AB、BC的中点,MN=1,∴AC=2MN=2,∵AC、BD是菱形ABCD的对角线,BD=2,∴OA=AC=1,OB=BD=,∴AB==2,∴菱形的周长=4AB=8,故答案为:8本题考查了菱形的性质、三角形中位线的性质及勾股定理,菱形的四条边相等,对角线互相垂直平分且平分对角;三角形中位线平行于第三边且等于第三边的一半.熟练掌握相关性质是解题关键.二、解答题(本大题共3个小题,共30分)24、(1)45,50,0.05;(2);(3)若每月上网的时间为31小时,选择方式B能节省上网费.【解析】
(1)根据函数图象可以得到m、n的值,然后根据15小时花费45元可以求得p的值;
(2)根据表格中的数据可以求得与x之间的函数关系式;
(3)当时,分别求出两种方式下的费用,然后比较大小即可解答本题.【详解】解:(1)由函数图象可得,
,,,
故答案为:45,50,;(2)当时,,
当时,,
综上所述:;(3)当时,
,
,
,
若每月上网的时间为31小时,选择方式B能节省上网费.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,求出相应的函数解析式,利用函数的性质解答.25、(1)AP⊥BF,(2)见解析;(3)1≤AP≤2【解析】
(1)根据直角三角形斜边中线定理可得,即△AP
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络安全投标售后保障
- 玩具店内部装修工装施工合同
- 矿石材料标签规范
- 车站监控系统施工合同
- 农业用肥料标签管理办法
- 铝厂混凝土施工合同
- 咨询公司财务规划策略
- 环保技术开发招标办法
- 酒类批发市场卫生条例
- 温泉公园施工合同
- 大班科学活动 有害的噪音
- 鱼骨图PPT模板精品教案0002
- 话剧《林黛玉进贾府》
- 油墨组成和分类
- 人音版初中音乐七年级下册 第四单元 美洲乐声 《化装舞会》课件(共8张PPT)
- 北师大版三年级数学上册认识小数复习课件ppt
- 2019版外研社高中英语必修二单词默写表
- 美的分权规范手册
- 混凝土连续箱梁满堂支架现浇施工工艺标准By阿拉蕾
- 教程学习基础网站上的mike urban
- 危险化学品储存安全检查表(共4页)
评论
0/150
提交评论