上海市曹杨二中2025届数学高一上期末学业水平测试模拟试题含解析_第1页
上海市曹杨二中2025届数学高一上期末学业水平测试模拟试题含解析_第2页
上海市曹杨二中2025届数学高一上期末学业水平测试模拟试题含解析_第3页
上海市曹杨二中2025届数学高一上期末学业水平测试模拟试题含解析_第4页
上海市曹杨二中2025届数学高一上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市曹杨二中2025届数学高一上期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.条件p:|x|>x,条件q:,则p是q的()A.充要条件 B.既不充分也不必要条件C.必要不充分条件 D.充分不必要条件2.若函数在上是增函数,则实数的取值范围是()A. B.C. D.3.下列命题中正确的是()A.第一象限角小于第二象限角 B.锐角一定是第一象限角C.第二象限角是钝角 D.平角大于第二象限角4.已知,则下列选项错误的是()A. B.C.的最大值是 D.的最小值是5.若且,则下列不等式中一定成立的是A. B.C. D.6.若函数是偶函数,则的单调递增区间为()A. B.C. D.7.设为偶函数,且在区间上单调递减,,则的解集为()A.(-1,1) B.C. D.(2,4)8.已知一组数据为20,30,40,50,50,50,70,80,其平均数、第60百分位数和众数的大小关系是()A.平均数=第60百分位数>众数 B.平均数<第60百分位数=众数C.第60百分位数=众数<平均数 D.平均数=第60百分位数=众数9.函数的定义域为()A.B.且C.且D.10.已知向量和的夹角为,且,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若是两个相交平面,则在下列命题中,真命题的序号为________.(写出所有真命题的序号)①若直线,则在平面内,一定不存在与直线平行的直线②若直线,则在平面内,一定存在无数条直线与直线垂直③若直线,则在平面内,不一定存在与直线垂直的直线④若直线,则在平面内,一定存在与直线垂直的直线12.已知对于任意x,y均有,且时,,则是_____(填奇或偶)函数13.已知与之间的一组数据如下,且它们之间存在较好的线性关系,则与的回归直线方程必过定点__________14.在平面直角坐标系中,正三角形ABC的边BC所在直线的斜率是0,则AC,AB所在直线的斜率之和为________15.已知扇形的圆心角为,面积为,则该扇形的弧长为___________.16.已知向量,,若,,,则的值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数的定义域.18.已知函数.(1)若的图象恒在直线上方,求实数的取值范围;(2)若不等式在区间上恒成立,求实数的取值范围.19.已知函数.(1)若在上单调递增,求的取值范围;(2)讨论函数的零点个数.20.如图,已知等腰梯形中,,,是的中点,,将沿着翻折成,使平面平面.(1)求证:平面;(2)求与平面所成的角;(3)在线段上是否存在点,使得平面,若存在,求出的值;若不存在,说明理由.21.化简或计算下列各式.(1);(2)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】解不等式得到p:,q:或,根据推出关系得到答案.【详解】由得:,所以p:,而,解得:或,故q:或,因为或,且或,故p是q的充分不必要条件故答案为:D2、B【解析】令,则可得,解出即可.【详解】令,其对称轴为,要使在上是增函数,则应满足,解得.故选:B.3、B【解析】根据象限角的定义及锐角、钝角及平角的大小逐一分析判断即可得解.【详解】解:为第一象限角,为第二象限角,故A错误;因为锐角,所以锐角一定是第一象限角,故B正确;因为钝角,平角,为第二象限角,故CD错误.故选:B.4、D【解析】根据题意求出b的范围可以判断A,然后结合基本不等式判断B,C,最后消元通过二次函数的角度判断D.【详解】对A,,正确;对B,,当且仅当时取“=”,正确;对C,,当且仅当时取“=”,正确;对D,由题意,,由A可知,所以,错误.故选:D.5、D【解析】利用不等式的性质逐个检验即可得到答案.【详解】A,a>b且c∈R,当c小于等于0时不等式不成立,故错误;Ba,b,c∈R,且a>b,可得a﹣b>0,当c=0时不等式不成立,故错误;,C,举反例,a=2,b=-1满足a>b,但不满足,故错误;D,将不等式化简即可得到a>b,成立,故选D.【点睛】本题主要考查不等式的性质以及排除法的应用,属于简单题.用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法.若结果为定值,则可采用此法.特殊法是“小题小做”的重要策略.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等6、B【解析】利用函数是偶函数,可得,解出.再利用二次函数的单调性即可得出单调区间【详解】解:函数是偶函数,,,化为,对于任意实数恒成立,,解得;,利用二次函数的单调性,可得其单调递增区间为故选:B【点睛】本题考查函数的奇偶性和对称性的应用,熟练掌握函数的奇偶性和二次函数的单调性是解题的关键.7、C【解析】由奇偶性可知的区间单调性及,画出函数草图,由函数不等式及函数图象求解集即可.【详解】根据题意,偶函数在上单调递减且,则在上单调递增,且函数的草图如图,或,由图可得-2<x<0或x>2,即不等式的解集为故选:C8、B【解析】从数据为20,30,40,50,50,50,70,80中计算出平均数、第60百分位数和众数,进行比较即可.【详解】解:平均数为,,第5个数50即为第60百分位数.又众数为50,它们的大小关系是平均数第60百分位数众数.故选:B.9、C【解析】根据给定函数有意义直接列出不等式组,解不等式组作答.【详解】依题意,,解得且,所以的定义域为且.故选:C10、D【解析】根据数量积的运算律直接展开,将向量的夹角与模代入数据,得到结果【详解】=8+3-18=8+3×2×3×-18=-1,故选D.【点睛】本题考查数量积的运算,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、②④【解析】①当时,在平面内存在与直线平行的直线.②若直线,则平面的交线必与直线垂直,而在平面内与平面的交线平行的直线有无数条,因此在平面内,一定存在无数条直线与直线垂直.③当直线为平面的交线时,在平面内一定存在与直线垂直的直线.④当直线为平面的交线,或与交线平行,或垂直于平面时,显然在平面内一定存在与直线垂直的直线.当直线为平面斜线时,过直线上一点作直线垂直平面,设直线在平面上射影为,则平面内作直线垂直于,则必有直线垂直于直线,因此在平面内,一定存在与直线垂直的直线考点:直线与平面平行与垂直关系12、奇函数【解析】赋值,可求得,再赋值即可得到,利用奇偶性的定义可判断奇偶性;【详解】,令,得,,再令,得,是上的奇函数;【点睛】本题考查了赋值法及奇函数的定义13、【解析】因为与的回归直线方程必过定点则与的回归直线方程必过定点.即答案为.14、0【解析】由于正三角形的内角都为,且边BC所在直线的斜率是0,不妨设边AB所在直线的倾斜角为,则斜率为,则边AC所在直线的倾斜角为,斜率为,所以AC,AB所在直线的斜率之和为15、【解析】由扇形的圆心角与面积求得半径再利用弧长公式即可求弧长.【详解】设扇形的半径为r,由扇形的面积公式得:,解得,该扇形的弧长为.故答案为:.16、C【解析】分析:由,,,可得向量与平行,且,从而可得结果.详解:∵,,,∴向量与平行,且,∴.故答案为.点睛:本题主要考查共线向量的坐标运算,平面向量的数量积公式,意在考查对基本概念的理解与应用,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】函数的定义域是,由对数函数的性质能够求出结果【详解】整理得解得函数的定义域为【点睛】本题考查对数函数的定义域,是基础题.解题时要认真审题,注意对数性质的合理运用18、(1);(2).【解析】(1)根据给定条件可得恒成立,再借助判别式列出不等式求解即得.(2)根据给定条件列出不等式,再分离参数,借助函数的单调性求出函数值范围即可推理作答.【小问1详解】因函数的图象恒在直线上方,即,,于是得,解得,所以实数的取值范围是:.【小问2详解】依题意,,,令,,令函数,,,,而,即,,则有,即,于是得在上单调递增,因此,,,即,从而有,则,所以实数的取值范围是.19、(1)(2)当时,有一个零点;当时,且当时,有两个零点,当时,有一个零点【解析】(1)由、都是单调递增函数可得的单调性,利用单调性可得答案;(2)时有一个零点;当时,利用单独单调性求得,分和讨论可得答案.【小问1详解】当时,单调递增,当时,单调递增,若在上单调递增,只需,.【小问2详解】当时,,此时,即,有一个零点;当时,,此时在上单调递增,,若,即,此时有一个零点;若,即,此时无零点,故当时,有两个零点,当时,有一个零点20、(1)证明见解析;(2)30°;(3)存在,.【解析】(1)首先根据已知条件并结合线面垂直的判定定理证明平面,再证明即可求解;(2)根据(1)中结论找出所求角,再结合已知条件即可求解;(3)首先假设存在,然后根据线面平行的性质以及已知条件,看是否能求出点的具体位置,即可求解.【详解】(1)因为,是的中点,所以,故四边形是菱形,从而,所以沿着翻折成后,,又因为,所以平面,由题意,易知,,所以四边形是平行四边形,故,所以平面;(2)因为平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论