




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省连云港市海头高级中学数学高三上期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线的一条渐近线方程为,那么它的离心率为()A. B. C. D.2.若(),,则()A.0或2 B.0 C.1或2 D.13.已知为非零向量,“”为“”的()A.充分不必要条件 B.充分必要条件C.必要不充分条件 D.既不充分也不必要条件4.已知m,n是两条不同的直线,,是两个不同的平面,给出四个命题:①若,,,则;②若,,则;③若,,,则;④若,,,则其中正确的是()A.①② B.③④ C.①④ D.②④5.已知复数,(为虚数单位),若为纯虚数,则()A. B.2 C. D.6.运行如图所示的程序框图,若输出的的值为99,则判断框中可以填()A. B. C. D.7.已知函数,,当时,不等式恒成立,则实数a的取值范围为()A. B. C. D.8.某几何体的三视图如图所示,则该几何体的体积是()A. B. C. D.9.等比数列中,,则与的等比中项是()A.±4 B.4 C. D.10.已知函数(,)的一个零点是,函数图象的一条对称轴是直线,则当取得最小值时,函数的单调递增区间是()A.() B.()C.() D.()11.已知斜率为k的直线l与抛物线交于A,B两点,线段AB的中点为,则斜率k的取值范围是()A. B. C. D.12.若函数的图象经过点,则函数图象的一条对称轴的方程可以为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如果函数(,且,)在区间上单调递减,那么的最大值为__________.14.在三棱锥中,三条侧棱两两垂直,,则三棱锥外接球的表面积的最小值为________.15.已知点是椭圆上一点,过点的一条直线与圆相交于两点,若存在点,使得,则椭圆的离心率取值范围为_________.16.在中,内角A,B,C的对边分别是a,b,c,且,,,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱柱中,平面,,,分别为,的中点.(1)求证:平面;(2)若平面平面,求直线与平面所成角的正弦值.18.(12分)如图,在平面直角坐标系xOy中,已知椭圆C:(a>b>0)的离心率为.且经过点(1,),A,B分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆C于D,E两点(其中D在x轴上方).(1)求椭圆C的标准方程;(2)若△AEF与△BDF的面积之比为1:7,求直线l的方程.19.(12分)已知离心率为的椭圆经过点.(1)求椭圆的方程;(2)荐椭圆的右焦点为,过点的直线与椭圆分别交于,若直线、、的斜率成等差数列,请问的面积是否为定值?若是,求出此定值;若不是,请说明理由.20.(12分)已知函数,直线是曲线在处的切线.(1)求证:无论实数取何值,直线恒过定点,并求出该定点的坐标;(2)若直线经过点,试判断函数的零点个数并证明.21.(12分)在直角坐标系中,曲线的参数方程为:(其中为参数),直线的参数方程为(其中为参数)(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求曲线的极坐标方程;(2)若曲线与直线交于两点,点的坐标为,求的值.22.(10分)在直角坐标系中,圆C的参数方程(为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是,射线与圆C的交点为O、P,与直线l的交点为Q,求线段的长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据双曲线的一条渐近线方程为,列出方程,求出的值即可.【详解】∵双曲线的一条渐近线方程为,可得,∴,∴双曲线的离心率.故选:D.【点睛】本小题主要考查双曲线离心率的求法,属于基础题.2、A【解析】
利用复数的模的运算列方程,解方程求得的值.【详解】由于(),,所以,解得或.故选:A【点睛】本小题主要考查复数模的运算,属于基础题.3、B【解析】
由数量积的定义可得,为实数,则由可得,根据共线的性质,可判断;再根据判断,由等价法即可判断两命题的关系.【详解】若成立,则,则向量与的方向相同,且,从而,所以;若,则向量与的方向相同,且,从而,所以.所以“”为“”的充分必要条件.故选:B【点睛】本题考查充分条件和必要条件的判定,考查相等向量的判定,考查向量的模、数量积的应用.4、D【解析】
根据面面垂直的判定定理可判断①;根据空间面面平行的判定定理可判断②;根据线面平行的判定定理可判断③;根据面面垂直的判定定理可判断④.【详解】对于①,若,,,,两平面相交,但不一定垂直,故①错误;对于②,若,,则,故②正确;对于③,若,,,当,则与不平行,故③错误;对于④,若,,,则,故④正确;故选:D【点睛】本题考查了线面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,属于基础题.5、C【解析】
把代入,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可.【详解】∵,∴,∵为纯虚数,∴,解得.故选C.【点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题.6、C【解析】
模拟执行程序框图,即可容易求得结果.【详解】运行该程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此时要输出的值为99.此时.故选:C.【点睛】本题考查算法与程序框图,考查推理论证能力以及化归转化思想,涉及判断条件的选择,属基础题.7、D【解析】
由变形可得,可知函数在为增函数,由恒成立,求解参数即可求得取值范围.【详解】,即函数在时是单调增函数.则恒成立..令,则时,单调递减,时单调递增.故选:D.【点睛】本题考查构造函数,借助单调性定义判断新函数的单调性问题,考查恒成立时求解参数问题,考查学生的分析问题的能力和计算求解的能力,难度较难.8、A【解析】
观察可知,这个几何体由两部分构成,:一个半圆柱体,底面圆的半径为1,高为2;一个半球体,半径为1,按公式计算可得体积。【详解】设半圆柱体体积为,半球体体积为,由题得几何体体积为,故选A。【点睛】本题通过三视图考察空间识图的能力,属于基础题。9、A【解析】
利用等比数列的性质可得,即可得出.【详解】设与的等比中项是.
由等比数列的性质可得,.
∴与的等比中项
故选A.【点睛】本题考查了等比中项的求法,属于基础题.10、B【解析】
根据函数的一个零点是,得出,再根据是对称轴,得出,求出的最小值与对应的,写出即可求出其单调增区间.【详解】依题意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值为.因为,所以().又,所以,所以,令(),则().因此,当取得最小值时,的单调递增区间是().故选:B【点睛】此题考查三角函数的对称轴和对称点,在对称轴处取得最值,对称点处函数值为零,属于较易题目.11、C【解析】
设,,,,设直线的方程为:,与抛物线方程联立,由△得,利用韦达定理结合已知条件得,,代入上式即可求出的取值范围.【详解】设直线的方程为:,,,,,联立方程,消去得:,△,,且,,,线段的中点为,,,,,,,,把代入,得,,,故选:【点睛】本题主要考查了直线与抛物线的位置关系,考查了韦达定理的应用,属于中档题.12、B【解析】
由点求得的值,化简解析式,根据三角函数对称轴的求法,求得的对称轴,由此确定正确选项.【详解】由题可知.所以令,得令,得故选:B【点睛】本小题主要考查根据三角函数图象上点的坐标求参数,考查三角恒等变换,考查三角函数对称轴的求法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、18【解析】
根据函数单调性的性质,分一次函数和一元二次函数的对称性和单调区间的关系建立不等式,利用基本不等式求解即可.【详解】解:①当时,,在区间上单调递减,则,即,则.②当时,,函数开口向上,对称轴为,因为在区间上单调递减,则,因为,则,整理得,又因为,则.所以即,所以当且仅当时等号成立.综上所述,的最大值为18.故答案为:18【点睛】本题主要考查一次函数与二次函数的单调性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.14、【解析】
设,可表示出,由三棱锥性质得这三条棱长的平方和等于外接球直径的平方,从而半径的最小值,得外接球表面积.【详解】设则,由两两垂直知三棱锥的三条棱的棱长的平方和等于其外接球的直径的平方.记外接球半径为,∴当时,.故答案为:.【点睛】本题考查三棱锥外接球表面积,解题关键是掌握三棱锥的性质:三条侧棱两两垂直的三棱锥的外接球的直径的平方等于这三条侧棱的平方和.15、【解析】
设,设出直线AB的参数方程,利用参数的几何意义可得,由题意得到,据此求得离心率的取值范围.【详解】设,直线AB的参数方程为,(为参数)代入圆,化简得:,,,,存在点,使得,,即,,,,故答案为:【点睛】本题主要考查了椭圆离心率取值范围的求解,考查直线、圆与椭圆的综合运用,考查直线参数方程的运用,属于中档题.16、9【解析】
已知由余弦定理即可求得,由可求得,即可求得,利用正弦定理即可求得结果.【详解】由余弦定理和,可得,得,由,,,由正弦定理,得.故答案为:.【点睛】本题考查正余弦定理在解三角形中的应用,难度一般.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2).【解析】
(1)连接,,则且为的中点,又∵为的中点,∴,又平面,平面,故平面.(2)由平面,得,.以为原点,分别以,,所在直线为轴,轴,轴建立如图所示的空间直角坐标系,设,则,,,,,.取平面的一个法向量为,由,得:,令,得同理可得平面的一个法向量为∵平面平面,∴解得,得,又,设直线与平面所成角为,则.所以,直线与平面所成角的正弦值是.18、(1)(2).【解析】
(1)利用离心率和椭圆经过的点建立方程组,求解即可.(2)把面积之比转化为纵坐标之间的关系,联立方程结合韦达定理可求.【详解】解:(1)设焦距为2c,由题意知:;解得,所以椭圆的方程为.(2)由(1)知:F(﹣1,0),设l:,D(,),E(,),<0<①,,,②;③;由①②得:,,代入③得:,又,故,因此,直线l的方程为.【点睛】本题主要考查椭圆方程的求解及椭圆中的面积问题,椭圆方程一般利用待定系数法,建立方程组进行求解,面积问题的合理转化是求解的关键,侧重考查数学运算的核心素养.19、(1);(2)是,【解析】
(1)根据及可得,再将点代入椭圆的方程与联立解出,即可求出椭圆的方程;(2)可设所在直线的方程为,,,,将直线的方程与椭圆的方程联立,用根与系数的关系求出,然后将直线、、的斜率、、分别用表示,利用可求出,从而可确定点恒在一条直线上,结合图形即可求出的面积.【详解】(1)因为椭圆的离心率为,所以,即,又,所以,①因为点在椭圆上,所以,②由①②解得,所以椭圆C的方程为.(1)可知,,可设所在直线的方程为,由,得,设,,,则,,设直线、、的斜率分别为、、,因为三点共线,所以,即,所以,又,因为直线、、的斜率成等差数列,所以,即,化简得,即点恒在一条直线上,又因为直线方程为,且,所以是定值.【点睛】本题主要考查椭圆的方程,直线与椭圆的位置关系及椭圆中的定值问题,属于中档题.20、(1)见解析,(2)函数存在唯一零点.【解析】
(1)首先求出导函数,利用导数的几何意义求出处的切线斜率,利用点斜式即可求出切线方程,根据方程即可求出定点.(2)由(1)求出函数,令方程可转化为记,利用导数判断函数在上单调递增,根据,由零点存在性定理即可求出零点个数.【详解】所以直线方程为即,恒过点将代入直线方程,得考虑方程即,等价于记,则于是函数在上单调递增,又所以函数在区间上存在唯一零点,即函数存在唯一零点.【点睛】本题考查了导数的几何意义、直线过定点、利用导数研究函数的单调性、零点存在性定理,属于难题.21、(1)(2)5【解析】
(1)首先消去参数得到曲线的普通方程,再根据,,得到曲线的极坐标方程;(2)将直线的参数方程代入曲线的直角坐标方程,利用直线的参数方程中参数的几何意义得解;【详解】解:(1)曲线:消去参数得到:,由,,得所以(2)代入,设,,由直线的参数方程参数的几何意义得:【点睛】本题考查参数方程、极坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 茅台酒战略市场规划报告
- 前期接入服务合同范本模板
- 公租房置换合同范本
- 历制作合同范本
- 厨房冰箱转让合同范例
- 食堂托管经营合同范本
- 云南公路合同范本
- 兽医传染病学试题库含答案
- 医疗服务合同范例隐私
- 司机补充协议合同范本
- 个人应聘简历电工
- 2025年上半年河南省高校毕业生“三支一扶”招募1100人易考易错模拟试题(共500题)试卷后附参考答案
- 高血压的用药指导任务三高血压的药物治疗讲解
- 云南省大理白族自治州2024-2025学年八年级上学期1月期末考试英语试卷(无答案)
- 无人机行业市场分析指南
- 踇外翻病人护理查房
- 广西河池市(2024年-2025年小学六年级语文)统编版专题练习(上学期)试卷及答案
- 施工安全管理培训资料
- 第16课数据管理与编码(教案)四年级全一册信息技术人教版
- 中建10t龙门吊安拆安全专项施工方案
- 国内外测井技术现状与展望文档
评论
0/150
提交评论