版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省肥城市高二数学第一学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若某群体中的成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为()A. B.C. D.2.已知点,,若直线过点且与线段相交,则直线的斜率的取值范围是()A. B.C. D.3.在等比数列中,,,则等于()A.90 B.30C.70 D.404.数列2,,9,,的一个通项公式可以是()A. B.C. D.5.若点在椭圆的外部,则的取值范围为()A. B.C. D.6.抛物线的焦点坐标是()A. B.C. D.7.设数列的前项和为,若,,,则、、、中,最大的是()A. B.C. D.8.设变量满足约束条件:,则的最小值()A. B.C. D.9.若倾斜角为的直线过两点,则实数()A. B.C. D.10.椭圆C:的焦点为,,点P在椭圆上,若,则的面积为()A.48 B.40C.28 D.2411.已知抛物线的焦点恰为双曲线的一个顶点,的另一顶点为,与在第一象限内的交点为,若,则直线的斜率为()A. B.C. D.12.不等式的解集为()A. B.C.或 D.或二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,若,则实数m的值是___________.14.数列满足,,则___________.15.已知数列满足,且,则______,数列的通项_____16.直线与直线的夹角大小等于_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的中心在原点,焦点在轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.(1)求椭圆的标准方程;(2)已知直线与椭圆交于、两点,、是椭圆上位于直线两侧的动点,且直线的斜率为,求四边形面积的最大值.18.(12分)已知抛物线的焦点到准线的距离为,过点的直线与抛物线只有一个公共点.(1)求抛物线的方程;(2)求直线的方程.19.(12分)在四棱锥中,平面,,,,,分别是的中点.(1)求证:平面;(2)求证:平面;(3)求直线与平面所成角的正弦值.20.(12分)已知数列满足,,且成等比数列(1)求的值和的通项公式;(2)设,求数列的前项和21.(12分)在平面直角坐标系xOy中,已知椭圆E:(a>b>0)的左、右焦点分别为F1,F2,离心率为.点P是椭圆上的一动点,且P在第一象限.记的面积为S,当时,.(1)求椭圆E的标准方程;(2)如图,PF1,PF2的延长线分别交椭圆于点M,N,记和的面积分别为S1和S2.(i)求证:存在常数λ,使得成立;(ii)求S2-S1的最大值.22.(10分)数列满足,,.(1)证明:数列是等差数列;(2)设,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用对立事件概率公式可求得所求事件的概率.【详解】由对立事件的概率公式可知,该群体中的成员不用现金支付的概率为.故选:A.2、B【解析】直接利用两点间的坐标公式和直线的斜率的关系求出结果【详解】解:直线过点且斜率为,与连接两点,的线段有公共点,由图,可知,,当时,直线与线段有交点故选:B3、D【解析】根据等比数列的通项公式即可求出答案.【详解】设该等比数列的公比为q,则,则.故选:D4、C【解析】用检验法,由通项公式验证是否符合数列各项,结合排除法可得【详解】第一项为正数,BD中求出第一项均为负数,排除,而AC均满足,A中,,排除A,C中满足,,,故选:C5、B【解析】根据题中条件,得到,求解,即可得出结果.【详解】因为点在椭圆的外部,所以,即,解得或.故选:B.6、C【解析】化为标准方程,利用焦点坐标公式求解.【详解】抛物线的标准方程为,所以抛物线的焦点在轴上,且,所以,所以抛物线的焦点坐标为.故选:C7、C【解析】求出的表达式,解不等式可得结果.【详解】由已知可得,故数列为等差数列,且公差为,所以,,令可得.因此,当时,最大.故选:C.8、D【解析】如图作出可行域,知可行域的顶点是A(-2,2)、B()及C(-2,-2),平移,当经过A时,的最小值为-8,故选D.9、A【解析】解方程即得解.【详解】解:由题得.故选:A10、D【解析】根据给定条件结合椭圆定义求出,再判断形状计算作答.【详解】椭圆C:的半焦距,长半轴长,由椭圆定义得,而,且,则有是直角三角形,,所以的面积为24.故选:D11、D【解析】根据题意,列出的方程组,解得,再利用斜率公式即可求得结果.【详解】因为抛物线的焦点,由题可知;又点在抛物线上,故可得;又,联立方程组可得,整理得,解得(舍)或,此时,又,故直线的斜率为.故选:D.12、A【解析】先将分式不等式转化为一元二次不等式,然后求解即可【详解】由,得,解得,所以原不等式的解集为,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】结合已知条件和空间向量的数量积的坐标公式即可求解.【详解】因为,所以,解得.故答案为:.14、【解析】根据题中所给的递推式得到数列具有周期性,进而得到结果.【详解】根据题中递推式知,可知数列具有周期性,周期为3,因为故故答案为:15、①.②.【解析】判断出是等差数列,由此求得,利用累加法求得.【详解】依题意,则,所以数列是以为首项,公差为的等差数列,所以,,当时,,,也符合上式,所以.故答案为:;16、##【解析】根据直线的倾斜角可得答案.【详解】直线是与轴平行的直线,直线的斜率为1,即与轴的夹角为角,故直线与直线的夹角大小等于.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据离心率的定义以及椭圆与抛物线焦点的关系,可以求出椭圆方程;(2)根据题意,可以利用铅锤底水平高的方法求四边形APBQ的面积,即是要利用韦达定理算出.【小问1详解】由题意,即;抛物线,焦点为,故,所以椭圆C的标准方程为:.【小问2详解】由题意作图如下:设AB直线的方程为:,并设点,,联立方程:得:,∴……①,……②,;由于A,B两点在直线PQ的两边(如上图),所以,即,将①②带入得:,解得;即由题意直线PQ的方程为,联立方程解得,,∴;将线段PQ看做铅锤底,A,B两点的横坐标之差看做水平高,得四边形APBQ的面积为:,当且仅当m=0时取最大值,而,所以的最大值为.18、(1);(2)或或.【解析】(1)根据给定条件结合p的几何意义,直接求出p写出方程作答.(2)直线l的斜率存在设出其方程,再与抛物线C的方程联立,再讨论计算,l斜率不存在时验证作答.【小问1详解】因抛物线的焦点到准线的距离为,于是得,所以抛物线的方程为.【小问2详解】当直线的斜率存在时,设直线为,由消去y并整理得:,当时,,点是直线与抛物线唯一公共点,因此,,直线方程为,当时,,此时直线与抛物线相切,直线方程为,当直线的斜率不存在时,y轴与抛物线有唯一公共点,直线方程为,所以直线方程为为或或.19、(1)证明见解析;(2)证明见解析;(3).【解析】(1)根据给定条件证得即可推理作答.(2)由已知条件,以点A作原点建立空间直角坐标系,借助空间位置关系的向量证明即可作答.(3)利用(2)中信息,借助空间向量求直线与平面所成角的正弦值.【小问1详解】在四棱锥中,因分别是的中点,则,因平面,平面,所以平面.【小问2详解】在四棱锥中,平面,,以点A为原点,射线AB,AD,AP分别为x,y,z轴非负半轴建立空间直角坐标系,如图,则,而且,则,,设平面的法向量,由,令,得,又,因此有,所以平面.【小问3详解】由(2)知,,令直线与平面所成角为,则有,所以直线与平面所成角的正弦值.20、(1);;(2)【解析】(1)由于,所以可得,再由成等比数列,列方程可求出,从而可求出的通项公式;(2)由(1)可得,然后利用错位相减法求【详解】解:(1)数列{an}满足,所以,所以a2+a3=a1+a2+d,由于a1=1,a2=1,所以a2+a3=2+d,a8+a9=2+7d,且a1,a2+a3,a8+a9成等比数列,所以,整理得d=1或2(1舍去)故an+2=an+2,所以n奇数时,an=n,n为偶数时,an=n﹣1所以数列{an}的通项公式为(2)由于,所以所以T2n=b1+b2+...+b2n=﹣20×12+20×22﹣22×32+22×42+...+[﹣22n﹣2•(2n﹣1)2]+22n﹣2•(2n)2,=20×(22﹣12)+22×(42﹣32)+...+22n﹣2•[(2n)2﹣(2n﹣1)2]=20×3+22×7+...+22n﹣2•(4n﹣1)①,所以,②,①﹣②得:﹣3T2n=20×3+22×4+...+22n﹣2×4﹣22n×(4n﹣1),=3+4×﹣22n×(4n﹣1),=,所以21、(1)(2)(i)存在常数,使得成立;(ii)的最大值为.【解析】(1)求点P的坐标,再利用面积和离心率,可以求出,然后就可以得到椭圆的标准方程;(2)设点的坐标和直线方程,联立方程,解出的y坐标值与P的坐标之间的关系,求以焦距为底边的三角形面积;利用均值定理当且仅当时取等号,求最大值.【小问1详解】先求第一象限P点坐标:,所以P点的坐标为,所以,所以椭圆E的方程为【小问2详解】设,易知直线和直线的坐标均不为零,因为,所以设直线的方程为,直线的方程为,由所以,因为,,所以所以同理由所以,因为,,所以所以,因为,,(i)所以所以存在常数,使得成立.(ii),当且仅当,时取等号,所以的最大值为.22、(1)证明见解析;(2)【解析】(1)将的两边同除以,得到,由等差数列的定义,即可作出证明;(2)有(1)求出,利用错位相减法即可求解数列的前项和.试题解析:(1)证明:由已知可得=+1,即-=1.所以是以=1为首项,1为公差的等差数列(2)由(1)得=1+(n-1)·1=n,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年产xx内墙砖项目可行性研究报告(项目建议书)
- 年产xx玻璃钢防腐制品项目建议书
- 年产xx印泥项目建议书
- 年产xx建筑砌块项目可行性研究报告(投资方案)
- 高三地理一轮复习课件 自然地理垂直地域分异规律
- 一年级上册数学教案 第五单元 第2节【第二课时】 8、9的组成 人教新课标
- 小班健康详案教案及教学反思《小手真干净》
- 2024年照相及电影洗印设备项目资金需求报告代可行性研究报告
- 小班健康领域教案《男孩女孩》
- 2023-2024学年广东省深圳市宝安区六年级上学期期末英语试卷
- 检验科医疗质量安全管理小组工作记录本
- 下乡调研农业访谈总结
- 粮油食品加工工艺学复习题
- D702-1~3 常用低压配电设备及灯具安装(2004年合订本)_(高清版)
- 租户分级安全管理规定
- 钢板桩支护工程检验批质量验收记录
- 年产20万吨氯碱盐酸工段工艺设计(共22页)
- 沙多玛产品目录表
- 《卵巢黄体破裂》PPT课件.ppt
- 立式隔膜电解槽
- 电力设计企业员工激励机制
评论
0/150
提交评论