




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2025届山东省烟台芝罘区六校联考九年级数学第一学期开学考试模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若一个直角三角形的两直角边长分别为3和4,则下列说法不正确的是()A.这个直角三角形的斜边长为5B.这个直角三角形的周长为12C.这个直角三角形的斜边上的高为D.这个直角三角形的面积为122、(4分)已知y-3与x成正比例,且x=2时,y=7,则y与x的函数关系式为()A.y=2x+3 B.y=2x-3 C.y-3=2x+3 D.y=3x-33、(4分)如图,在四边形ABCD中,AD∥BC,∠BCD=90°,将四边形ABCD沿AB方向平移得到四边形A'B'C'D',BC与C'D'相交于点E,若BC=8,CE=3,C'E=2,则阴影部分的面积为()A.12+2 B.13 C.2+6 D.264、(4分)五一小长假,李军与张明相约去宁波旅游,李军从温岭北上沿海高速,同时张明从玉环芦浦上沿海高速,温岭北与玉环芦浦相距44千米,两人约好在三门服务区集合,李军由于离三门近,行驶了1.2小时先到达三门服务站等候张明,张明走了1.4小时到达三门服务站。在整个过程中,两人均保持各自的速度匀速行驶,两人相距的路程y千米与张明行驶的时间x小时的关系如图所示,下列说法错误的是(
)A.李军的速度是80千米/小时B.张明的速度是100千米/小时C.玉环芦浦至三门服务站的路程是140千米D.温岭北至三门服务站的路程是44千米5、(4分)已知实数a在数轴上的位置如图所示,则化简的结果为()A.1 B.﹣1 C.1﹣2a D.2a﹣16、(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.2 D.37、(4分)八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x及方差S2如下表所示:甲乙丙丁85939386S2333.53.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A.赵研 B.钱进 C.孙兰 D.李丁8、(4分)在中,若斜边,则边上的中线的长为()A.1 B.2 C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)▱ABCD中,AE⊥BD,∠EAD=60°,AE=2cm,AC+BD=14cm,则△OBC的周长是_____cm.10、(4分)如图,已知:l1∥l2∥l3,AB=6,DE=5,EF=7.5,则AC=__.11、(4分)若一组数据1,3,5,,的众数是3,则这组数据的方差为______.12、(4分)如图,在四边形ABCD中,已知AB=CD,再添加一个条件_______(写出一个即可),则四边形ABCD是平行四边形.(图形中不再添加辅助线)13、(4分)如图,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=,且∠ECF=45°,则CF的长为__________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.15、(8分)已知:如图1,在中,点为对角线的中点,过点的直线分别交边、于点、,过点的直线分别交边、于点、,且.(1)求证:四边形为平行四边形;(2)如图2,当四边形为矩形时,求证:.16、(8分)已知一次函数图像过点P(0,6),且平行于直线y=-2x(1)求该一次函数的解析式(2)若点A(,a)、B(2,b)在该函数图像上,试判断a、b的大小关系,并说明理由。17、(10分)(1)化简:.(2)若(1)中的值是不等式“”的一个负整数解,请你在其中选一个你喜欢的数代入(1)中求值.18、(10分)如图,的对角线,相交于点,,是上的两点,并且,连接,.(1)求证;(2)若,连接,,判断四边形的形状,并说明理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别交AB、BC于点D、E,连结DE.若四边形ODBE的面积为9,则△ODE的面积是________.20、(4分)如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为___.21、(4分)若点P(-2,2)是正比例函数y=kx(k≠0)图象上的点,则此正比例函数的解析式为______.22、(4分)已知中,,,直线经过点,分别过点,作直线的垂线,垂足分别为点,,若,,则线段的长为__________.23、(4分)如图,平行四边形ABCD中,∠ABC=60°,E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,CF=1,求AB的长是___________.二、解答题(本大题共3个小题,共30分)24、(8分)已知:如图,平面直角坐标系中,,,点C是x轴上一点,点D为OC的中点.(1)求证:BD∥AC;(2)若点C在x轴正半轴上,且BD与AC的距离等于2,求点C的坐标;(3)如果于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.25、(10分)问题背景:对于形如这样的二次三项式,可以直接用完全平方公式将它分解成,对于二次三项式,就不能直接用完全平方公式分解因式了.此时常采用将加上一项,使它与的和成为一个完全平方式,再减去,整个式子的值不变,于是有:=====问题解决:(1)请你按照上面的方法分解因式:;(2)已知一个长方形的面积为,长为,求这个长方形的宽.26、(12分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.(1)求证:△AEB≌△CFD;(2)连接AF,CE,若∠AFE=∠CFE,求证:四边形AFCE是菱形.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】
先根据勾股定理求出斜边长,再根据三角形面积公式,三角形的性质即可判断.【详解】解:根据勾股定理可知,直角三角形两直角边长分别为3和4,则它的斜边长是,周长是3+4+5=12,斜边长上的高为,面积是3×4÷2=1.故说法不正确的是D选项.故选:D.本题考查了利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方.但本题也用到了三角形的面积公式,和周长公式.2、A【解析】
用待定系数法可求出函数关系式.【详解】y-1与x成正比例,即:y=kx+1,且当x=2时y=7,则得到:k=2,则y与x的函数关系式是:y=2x+1.故选:A.此题考查了待定系数法求一次函数解析式,利用正比例函数的特点以及已知条件求出k的值,写出解析式.3、B【解析】
利用平移的性质得到B′C′=BC=8,BC∥B′C′,CD∥C′D′,S梯形ABCD=S梯形A′B′C′D′,然后根据S阴影部分=S梯形BB′C′E进行计算.【详解】解:∵四边形ABCD沿AB方向平移得到四边形A'B'C'D',∴B′C′=BC=8,BC∥B′C′,CD∥C′D′,S梯形ABCD=S梯形A′B′C′D′,∴C′D′⊥BE,∴S阴影部分=S梯形BB′C′E=(8﹣3+8)×2=1.故选:B.本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.4、D【解析】
利用函数图像,可知1.2小时张明走了20千米,利用路程÷时间=速度,就可求出张明的速度,从而可求出李军的速度,可对A,B作出判断;再利用路程=速度×时间,就可求出玉环芦浦至三门服务站的路程和温岭北至三门服务站的路程,可对C,D作出判断.【详解】解:∵1.2小时,他们两人相距20千米,张明走了1.4小时到达三门服务站,即两人相距路程为0千米,∴张明的速度为:20÷(1.4-1.2)=100千米/时,故B正确;李军的速度为:100-(44-20)÷1.2=100-20=80千米/时,故A正确;∴玉环芦浦至三门服务站的路程为100×1.4=140千米。故C正确;∴温岭北至三门服务站的路程为1.2×80=96千米,故D错误;故答案为:D.本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.5、A【解析】
先由点a在数轴上的位置确定a的取值范围及a-1的符号,再代入原式进行化简即可【详解】由数轴可知0<a<1,所以,=1,选A。此题考查二次根式的性质与化简,实数与数轴,解题关键在于确定a的大小6、C【解析】
由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.【详解】∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB=,故选C.此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB是等边三角形是解题关键.7、B【解析】
根据平均数和方差的意义解答.【详解】从平均数看,成绩最好的是钱进、孙兰同学,从方差看,钱进方差小,发挥最稳定,所以如果选出一名成绩较好且状态稳定的同学去参赛,那么应选钱进.故选:.本题考查了平均数和方差,熟悉它们的意义是解题的关键.8、D【解析】
再根据直角三角形斜边上的中线等于斜边的一半可得BD=AC.【详解】∵BD是斜边AC边上的中线,∴BD=AC=×=.故选D.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1.【解析】
首先根据平行四边形基本性质,AE⊥BD,∠EAD=60°,可得∠ADE=30°,然后再根据直角三角形的性质可得AD=2AE=4cm,再根据四边形ABCD是平行四边形可得AO=CO,BO=DO,BC=AD=4cm,进而求出BO+CO的长,然后可得△OBC的周长.【详解】∵AE⊥BD,∠EAD=60°,∴∠ADE=30°,∴AD=2AE=4cm,∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,BC=AD=4cm,∵AC+BD=14cm,∴BO+CO=7cm,∴△OBC的周长为:7+4=1(cm),故答案为1本题考查平行四边形的基本性质,解题关键在于根据直角三角形的性质得出AD=2AE=4cm10、15【解析】l1∥l2∥l3,,所以,所以AC=15.11、2【解析】
先根据众数的概念得出x=3,再依据方差的定义计算可得.【详解】解:∵数据1,3,5,x的众数是3,∴x=3,则数据为1、3、3、5,∴这组数据的平均数为:,∴这组数据的方差为:;故答案为:2.本题主要考查众数和方差,解题的关键是根据众数的概念求出x的值,并熟练掌握方差的定义和计算公式.12、AD=BC(答案不唯一)【解析】
可再添加一个条件AD=BC,根据两组对边分别相等的四边形是平行四边形,得出四边形ABCD是平行四边形.13、【解析】如图,延长FD到G,使DG=BE;连接CG、EF;∵四边形ABCD为正方形,在△BCE与△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=3,CB=6,∴BE=,∴AE=3,设AF=x,则DF=6−x,GF=3+(6−x)=9−x,∴EF=,∴(9−x)²=9+x²,∴x=4,即AF=4,∴GF=5,∴DF=2,∴CF==,故答案为:.点睛:本题考查了全等三角形的判定与性质,勾股定理的知识点,构建三角形,利用方程思想是解答本题的关键.三、解答题(本大题共5个小题,共48分)14、(1)证明见解析;(2)1.【解析】【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=1,BD=2OD=2,∴菱形ABCD的面积为:AC•BD=×1×2=1,故答案为1.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.15、(1)证明见解析;(2)证明见解析.【解析】
(1)只要证明,即可解决问题;(2)由已知可证明,从而可得,,进而可得,由线段加减即可解决问题.【详解】(1)证明:∵四边形为平行四边形,∴.∴.∵点为对角线的中点,∴.∵,∴(ASA).∴.同理∴四边形为平行四边形.(2)证明:∵四边形为矩形,∴,且,.∴.又∵,.∴(ASA).∴,.∴.∴.即.本题考查了四边形综合,涉及了矩形的性质、平行四边形的判定和性质、三角形全等的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16、(1)y=-2x+6(2)答案见解析【解析】
(1)根据两一次函数图像平行,可得到k的值相等,因此设一次函数解析式为y=-2x+b,再将点P的坐标代入函数解析式就可求出b的值,就可得到函数解析式;(2)利用一次函数的性质:k<0时,y随x的增大而减小,比较点A,B的横坐标的大小,就可求得a,b的大小关系【详解】(1)解:∵一次函数图像过点P(0,6),且平行于直线y=-2x,∴设这个一次函数解析式为y=-2x+b∴b=6∴该一次函数解析式为y=-2x+6;(2)解:∵一次函数解析式为y=-2x+6,k=-2<0∴y随x的增大而减小;∵点A(,a)、B(2,b)在该函数图像上且,∴a>b此题主要考查了一次函数的图象和性质,关键是掌握一次函数图象平行时,k值相等.17、(1)x+1;(2)-2.【解析】
(1)先将括号内的进行通分,再把除法转化为乘法,约分化简即可;(2)求出不等式的解集,再取一个满足(1)成立的x的负整数值代入求解即可.【详解】(1)原式==x+1;(2)解不等式“”得,∴其负整数解是-3、-2、-1.∴当时,原式=-3+1=-2分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.要注意代入求值时,要使原式和化简的每一步都有意义.18、(1)详见解析;(2)四边形BEDF是矩形,理由详见解析.【解析】
(1)已知四边形ABCD是平行四边形,根据平行四边形的性质可得OA=OC,OB=OD,由AE=CF即可得OE=OF,利用SAS证明△BOE≌△DOF,根据全等三角形的性质即可得BE=DF;(2)四边形BEDF是矩形.由(1)得OD=OB,OE=OF,根据对角线互相平方的四边形为平行四边形可得四边形BEDF是平行四边形,再由BD=EF,根据对角线相等的平行四边形为矩形即可判定四边形EBFD是矩形.【详解】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(SAS),∴BE=DF;(2)四边形BEDF是矩形.理由如下:如图所示:∵OD=OB,OE=OF,∴四边形BEDF是平行四边形,∵BD=EF,∴四边形EBFD是矩形.本题考查了平行四边形的性质及判定、矩形的判定,熟练运用相关的性质及判定定理是解决问题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
设B的坐标为(2a,2b),E点坐标为(x,2b),D点坐标为(2a,y),因为D、E、M在反比例函数图象上,则ab=k,2bx=k,2ay=k,根据四边形ODBE的面积列式,求得k值,再由2bx×2ay=4abxy=k2=9,求得xy的值,然后根据所求的结果求出△BED的面积,则△ODE的面积就是四边形ODBE的面积和△BED的面积之差.【详解】解:设B的坐标为(2a,2b),则M点坐标为(a,b),
∵M在AC上,∴ab=k(k>0),设E点坐标为(x,2b),D点坐标为(2a,y),则2bx=k,2ay=k,∴S四边形ODBE=2a×2b-×(2bx+2ay)=9,即4k-(k+k)=9,解得k=3,∵2bx×2ay=4abxy=k2=9,∴4abxy=9,解得:xy=,则S△BED=BE×BD=,∴
S△ODE=
S四边形ODBE-S△BED=9-本题主要考查反比函数与几何综合,解题关键在于利用面积建立等式求出k.20、(﹣,2)【解析】
根据一次函数图象上点的坐标特征可求出点A、B的坐标,由BC=OC利用等腰三角形的性质可得出OC、OE的值,再利用勾股定理可求出CE的长度,此题得解.【详解】∵直线y=﹣x+4与x轴、y轴分别交于A、B两点,∴点A的坐标为(3,0),点B的坐标为(0,4).过点C作CE⊥y轴于点E,如图所示.∵BC=OC=OA,∴OC=3,OE=2,∴CE==,∴点C的坐标为(﹣,2).故答案为:(﹣,2).本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及勾股定理,利用等腰直角三角形的性质结合勾股定理求出CE、OE的长度是解题的关键.21、y=-x【解析】
直接把点(-2,2)代入正比例函数y=kx(k≠0),求出k的数值即可.【详解】把点(-2,2)代入y=kx得2=-2k,k=-1,所以正比例函数解析式为y=-x.故答案为:y=-x.本题考查了待定系数法求正比例函数解析式:设正比例函数解析式为y=kx(k≠0),然后把正比例函数图象上一个点的坐标代入求出k即可.22、或【解析】
分两种情况:①如图1所示:先证出∠1=∠3,由勾股定理求出CE,再证明△BCF≌△CAE,得出对应边相等CF=AE=3,得出EF=CE-CF即可;②如图2所示:先证出∠1=∠3,由勾股定理求出CE,再证明△BCF≌△CAE,得出对应边相等CF=AE=3,得出EF=CE+CF即可.【详解】分两种情况:①如图1所示:∵∠ACB=90°,∴∠1+∠2=90°,∵BF⊥CE,∴∠BFC=90°,∴∠2+∠3=90°,∴∠1=∠3,∵AE⊥CE,∴∠AEC=90°,∴CE=,在△BCF和△CAE中,,∴△BCF≌△CAE(AAS),∴CF=AE=3,∴EF=CE-CF=4-3=1;②如图2所示:∵∠ACB=90°,∴∠1+∠2=90°,∵BF⊥CF,∴∠BFC=90°,∴∠2+∠3=90°,∴∠1=∠3,∵AE⊥CF,∴∠AEC=90°,∴CE=,在△BCF和△CAE中,,∴△BCF≌△CAE(AAS),∴CF=AE=3,∴EF=CE+CF=4+3=1;综上所述:线段EF的长为:1或1.故答案为:1或1.本题考查了全等三角形的判定与性质、勾股定理、互余两角的关系;本题有一定难度,需要进行分类讨论,作出图形才能求解.23、1【解析】
根据已知条件易证四边形ABDE是平行四边形,可得AB=DE=CD,即D是CE的中点,在Rt△CEF中利用30°角直角三角形的性质可求得CE的长,继而求得AB的长.【详解】∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∴AB=CE,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,∵CF=1,∴CE=2,∴AB=1.故答案为1本题考查了平行四边形的判定与性质,正确证得D是CE的中点是关键.二、解答题(本大题共3个小题,共30分)24、(1)BD∥AC;(2);(3)【解析】
(1)由A与B的坐标求出OA与OB的长,进而得到B为OA的中点,而D为OC的中点,利用中位线定理即可得证;(2)如图1,作BF⊥AC于点F,取AB的中点G
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 付费会员活动方案
- 代发营销活动方案
- 代表倡议活动方案
- 以往纱窗活动方案
- 仪仗兵自由活动方案
- 仲夏集体活动方案
- 企业中秋拓展活动方案
- 湖北省T8联盟2025届高三下学期高考考前模拟(一)数学试题
- 企业会议活动方案
- 企业公司元旦活动方案
- 执行四方协议书范本范本
- 科技赋能娃娃玩具个性化定制
- 《边教书边成长》读书分享课件
- DB11T 811-2011 场地土壤环境风险评价筛选值
- 以上由自治区教育科学规划办填写内蒙古自治区教育科学“十四五”规划课题立项申请评审书
- 骨髓腔输液技术教案输液通路与监护P页
- 顺义区六年级下学期语文期末试卷
- 2024年重庆市高考思想政治试卷真题(含答案解析)
- 2.2 社会主义制度在中国的确立(课件)-2024-2025学年高中政治必修一 中国特色社会主义 (统编版 )
- 河北省保定市2023-2024学年高二下学期7月期末生物试题
- 《通信原理》期末考试复习题库(含答案)
评论
0/150
提交评论