版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省宜春市丰城中学高二数学第一学期期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设双曲线:(,)的右顶点为,右焦点为,为双曲线在第二象限上的点,直线交双曲线于另一个点(为坐标原点),若直线平分线段,则双曲线的离心率为()A. B.C. D.2.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中学生中抽取容量为50的样本,则应从高三年级抽取的学生数为()A.10 B.15C.20 D.303.已知点,动点P满足,则点P的轨迹为()A椭圆 B.双曲线C.抛物线 D.圆4.已知圆和椭圆.直线与圆交于、两点,与椭圆交于、两点.若时,的取值范围是,则椭圆的离心率为()A. B.C. D.5.由伦敦著名建筑事务所SteynStudio设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品,若将如图所示的大教堂外形弧线的一段近似看成双曲线下支的一部分,离心率为,则该双曲线的渐近线方程为()A. B.C. D.6.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”7.已知函数,若对任意两个不等的正数,,都有恒成立,则a的取值范围为()A. B.C. D.8.函数的定义域为,,对任意,,则的解集为()A. B.C. D.9.圆心在x轴负半轴上,半径为4,且与直线相切的圆的方程为()A. B.C. D.10.已知抛物线上一横坐标为5的点到焦点的距离为6,且该抛物线的准线与双曲线(,)的两条渐近线所围成的三角形面积为,则双曲线C的离心率为()A.3 B.4C.6 D.911.在三棱锥中,点E,F分别是的中点,点G在棱上,且满足,若,则()A. B.C. D.12.化学中,将构成粒子(原子、离子或分子)在空间按一定规律呈周期性重复排列构成的固体物质称为晶体.在结构化学中,可将晶体结构截分为一个个包含等同内容的基本单位,这个基本单位叫做晶胞.已知钙、钛、氧可以形成如图所示的立方体晶胞(其中Ti原子位于晶胞的中心,Ca原子均在顶点位置,O原子位于棱的中点).则图中原子连线BF与所成角的余弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是双曲线的左焦点,圆与双曲线在第一象限的交点,若的中点在双曲线的渐近线上,则此双曲线的离心率是___________.14.已知O为坐标原点,,是抛物线上的两点,且满足,则______;若OM垂直AB于点M,且为定值,则点Q的坐标为__________.15.若是直线外一点,为线段的中点,,,则______16.如图所示,高尔顿钉板是一个关于概率的模型,每一黑点表示钉在板上的一颗钉子,它们彼此的距离均相等,上一层的每一颗的水平位置恰好位于下一层的两颗正中间.小球每次下落时,将随机的向两边等概率的落下.当有大量的小球都落下时,最终在钉板下面不同位置收集到小球.现有5个小球从正上方落下,则恰有3个小球落到2号位置的概率是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前n项和为满足(1)求证:是等比数列,并求数列通项公式;(2)若,数列的前项和为.求证:18.(12分)已知等差数列{an}的前n项和为Sn,数列{bn}满足:点(n,bn)在曲线y=上,a1=b4,___,数列{}的前n项和为Tn从①S4=20,②S3=2a3,③3a3﹣a5=b2这三个条件中任选一个,补充到上面问题的横线上并作答(1)求数列{an},{bn}的通项公式;(2)是否存在正整数k,使得Tk>,且bk>?若存在,求出满足题意的k值;若不存在,请说明理由19.(12分)椭圆的左右焦点分别为,,焦距为,为原点.椭圆上任意一点到,距离之和为.(1)求椭圆的标准方程;(2)过点的斜率为2的直线交椭圆于、两点,求的面积.20.(12分)已知函数,求函数在上的最大值与最小值.21.(12分)某校高二年级全体学生参加了一次数学测试,学校利用简单随机抽样方法从甲班、乙班各抽取五名同学的数学测试成绩(单位:分)得到如下茎叶图,若甲、乙两班数据的中位数相等且平均数也相等.(1)求出茎叶图中m和n的值:(2)若从86分以上(不含86分)的同学中随机抽出两名,求此两人都来自甲班的概率.22.(10分)已知直线和直线(1)若时,求a的值;(2)当平行,求两直线,的距离
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由给定条件写出点A,F坐标,设出点B的坐标,求出线段FC的中点坐标,由三点共线列式计算即得.【详解】令双曲线的半焦距为c,点,设,由双曲线对称性得,线段FC的中点,因直线平分线段,即点D,A,B共线,于是有,即,即,离心率.故选:A2、C【解析】根据抽取比例乘以即可求解.【详解】由题意可得应从高三年级抽取的学生数为,故选:C.3、A【解析】根据椭圆的定义即可求解.【详解】解:,故,又,根据椭圆的定义可知:P的轨迹为椭圆.故选:A.4、C【解析】由题设,根据圆与椭圆的对称性,假设在第一象限可得,结合已知有,进而求椭圆的离心率.【详解】由题设,圆与椭圆的如下图示:又时,的取值范围是,结合圆与椭圆的对称性,不妨假设在第一象限,∴从0逐渐增大至无穷大时,,故,∴故选:C.5、B【解析】求出的值,可得出双曲线的渐近线方程.【详解】由已知可得,因此,该双曲线的渐近线方程为.故选:B.6、C【解析】结合互斥事件与对立事件的概念,对选项逐个分析可选出答案.【详解】对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.【点睛】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌握,属于基础题.7、A【解析】将已知条件转化为时恒成立,利用参数分离的方法求出a的取值范围【详解】对任意都有恒成立,则时,,当时恒成立,
,当时恒成立,,故选:A8、B【解析】构造函数,利用导数判断出函数在上的单调性,将不等式转化为,利用函数的单调性即可求解.【详解】依题意可设,所以.所以函数在上单调递增,又因为.所以要使,即,只需要,故选B.【点睛】本题考查利用函数的单调性解不等式,解题的关键就是利用导数不等式的结构构造新函数来解,考查分析问题和解决问题的能力,属于中等题.9、A【解析】根据题意,设圆心为坐标为,,由直线与圆相切的判断方法可得圆心到直线的距离,解得的值,即可得答案【详解】根据题意,设圆心为坐标为,,圆的半径为4,且与直线相切,则圆心到直线的距离,解得:或13(舍,则圆的坐标为,故所求圆的方程为,故选:A10、A【解析】由题意求得抛物线的准线方程为,进而得到准线与双曲线C的渐近线围成的三角形面积,求得,再结合和离心率的定义,即可求解.【详解】由题意,抛物线上一横坐标为5的点到焦点的距离为6,根据抛物线定义,可得,即,所以抛物线的准线方程为,又由双曲线C的两条渐近线方程为,则抛物线的准线与双曲线C的两条渐近线围成的三角形面积为,解得,又由,可得,所以双曲线C的离心率.故选:A.11、B【解析】利用空间向量的加、减运算即可求解.【详解】由题意可得故选:B.12、C【解析】如图所示,以为坐标原点,所在的直线分别为轴,建立直角坐标系,设立方体的棱长为,求出的值,即可得到答案;【详解】如图所示,以为坐标原点,所在的直线分别为轴,建立直角坐标系,设立方体的棱长为,则,,,,连线与所成角的余弦值为故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】计算点渐近线的距离,从而得,由勾股定理计算,由双曲线定义列式,从而计算得,即可计算出离心率.【详解】设双曲线右焦点为,因为的中点在双曲线的渐近线上,由可知,,因为为中点,所以,所以,即垂直平分线段,所以到渐近线的距离为,可得,所以,由双曲线定义可知,,即,所以,所以.故答案为:【点睛】双曲线的离心率是椭圆最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围)14、①.-24②.【解析】由抛物线的方程及数量积的运算可求出,设直线AB的方程为,联立抛物线方程,由根与系数的关系可求出,由圆的定义求出圆心即可.【详解】由,即解得或(舍去).设直线AB的方程为.由,消去x并整理得,.又,,直线AB恒过定点N(6,0),OM垂直AB于点M,点M在以ON为直径圆上.|MQ|为定值,点Q为该圆的圆心,又即Q(3,0).故答案为:;15、【解析】根据题意得到,进而得到,求得的值,即可求解.【详解】因为为线段的中点,所以,所以,又因为,所以,所以故答案为:.16、【解析】先研究一个小球从正上方落下的情况,从而可求出一个小球从正上方落下落到2号位置的概率,进而可求出5个小球从正上方落下,则恰有3个小球落到2号位置的概率【详解】如图所示,先研究一个小球从正上方落下的情况,11,12,13,14指小球第2层到第3层的线路图,以此类推,小球所有的路线情况如下:01-11-21-31,01-11-21-32,01-11-22-33,01-11-22-34,01-12-23-33,01-12-23-34,01-12-24-35,01-12-24-36,02-14-26-38,02-14-26-37,02-14-25-35,02-14-25-36,02-13-24-36,02-13-24-35,02-13-23-34,02-13-23-33,共16种情况,其中落入2号位置的有4种,所以每个球落入2号位置的概率为,所以5个小球从正上方落下,则恰有3个小球落到2号位置的概率为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,(2)证明见解析【解析】(1)令可求得的值,令,由可得,两式作差可得,利用等比数列的定义可证得结论成立,确定该数列的首项和公比,可求得数列的通项公式;(2)求得,利用错位相减法可求得,结合数列的单调性可证得结论成立.【小问1详解】证明:当时,,解得,当时,由可得,上述两个等式作差得,所以,,则,因为,则,可得,,,以此类推,可知对任意的,,所以,,因此,数列是等比数列,且首项为,公比为,所以,,解得.【小问2详解】证明:,则,其中,所以,数列为单调递减数列,则,,,上式下式,得,所以,,因此,.18、(1)条件选择见解析;an=2n,bn=25﹣n.(2)不存在,理由见解析.【解析】(1)把点(n,bn)代入曲线y=可得到bn=25﹣n,进而求出a1,设等差数列{an}的公差为d,选①S4=20,利用等差数列的前n项和公式可求出d,从而得到an;若选②S3=2a3,利用等差数列的前n项和公式可求出d,从而得到an;若选③3a3﹣a5=b2,利用等差数列的通项公式公式可求出d,从而得到an;(2)由(1)可知Sn==n(1+n),=,再利用裂项相消法求出Tn=1﹣,不等式无解,即不存在正整数k,使得Tk>,且bk>【小问1详解】解:∵点(n,bn)在曲线y=上,∴=25﹣n,∴a1=b4=25﹣4=2,设等差数列{an}的公差为d,若选①S4=20,则S4==20,解得d=2,∴an=2+2(n﹣1)=2n;若选②S3=2a3,则S3=a1+a2+a3=2a3,∴a1+a2=a3,∴2+2+d=2+2d,解得d=2,∴an=2+2(n﹣1)=2n;若选③3a3﹣a5=b2,则3(a1+2d)﹣(a1+4d)=25﹣2=8,∴2a1+2d=8,即2×2+2d=8,∴d=2,∴an=2+2(n﹣1)=2n;【小问2详解】解:由(1)可知Sn===n(1+n),∴==,∴Tn=(1﹣)+()+……+()=1﹣,假设存在正整数k,使得Tk>,且bk>,∴,即,此不等式无解,∴不存在正整数k,使得Tk>,且bk>19、(1)(2)【解析】(1)根据题意和椭圆的定义可知a,c,再根据,即可求出b,由此即可求出椭圆的方程;(2)求出直线方程,将其与椭圆方程联立,根据弦长公式求出的长度,再根据点到直线的距离公式求出点O到直线AB的距离,再根据面积公式即可求出结果.【小问1详解】由题意可得,,∴,,,所以椭圆的标准方程为.【小问2详解】直线l的方程为,代入椭圆方程得,设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重庆财经学院《物联网通信技术》2023-2024学年期末试卷
- 茶叶出口经营方案
- 茶叶企业资本转让方案
- 茶厅木椅设计研究报告
- 茶具清洗养护方案
- 苍南 十三五 研究报告
- 策划用户承接方案
- 仲恺农业工程学院《园艺疗法》2022-2023学年第一学期期末试卷
- 潮流前线产品策略研究报告
- 二年级数学计算题专项练习1000题汇编
- 审核的改进计划和措施
- 《旅游管理》专业调研报告
- 2024野生哺乳动物及栖息地调查技术规程
- 2024年中医药知识与技能竞赛题库附含答案
- 2023年6月大学生英语四级真题试卷及详细答案(三套)
- 高一选科指导课件
- 七年级上学期期中家长会 (共31张PPT)
- 跌倒、坠床试卷(含答案)
- 聚合反应工程基础
- Linux操作系统实用教程-统信UOS 课件 第2章 国产操作系统图形化界面使用
- 祖国不会忘记歌词(黄鹭)
评论
0/150
提交评论