人教版初一数学下册相交线与平行线模拟检测题含解析_第1页
人教版初一数学下册相交线与平行线模拟检测题含解析_第2页
人教版初一数学下册相交线与平行线模拟检测题含解析_第3页
人教版初一数学下册相交线与平行线模拟检测题含解析_第4页
人教版初一数学下册相交线与平行线模拟检测题含解析_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、选择题1.如图,的平分线的反向延长线和的平分线的反向延长线相交于点,则()A. B. C. D.2.如图,ABC中∠BAC=90°,将周长为12的ABC沿BC方向平移2个单位得到DEF,连接AD,则下列结论:①ACDF,AC=DF;②DE⊥AC;③四边形ABFD的周长是16;④,其中正确的个数有()A.1个 B.2个 C.3个 D.4个3.如图,已知直线、被直线所截,,E是平面内任意一点(点E不在直线、、上),设,.下列各式:①,②,③,④,的度数可能是()A.②③ B.①④ C.①③④ D.①②③④4.如图,的角平分线、相交于F,,,且于G,下列结论:①;②平分;③;④.其中正确的结论是()A.①③④ B.①②③ C.②④ D.①③5.下列几个命题中,真命题有()①两条直线被第三条直线所截,内错角相等;②如果和是对顶角,那么;③一个角的余角一定小于这个角的补角;④三角形的一个外角大于它的任一个内角.A.1个 B.2个 C.3个 D.46.如图,直线,三角板的直角顶点在直线上,已知,则等于().A.25° B.55° C.65° D.75°7.一副直角三角尺叠放如图1所示,现将45°的三角尺固定不动,将含30°的三角尺绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当时,,则()其它所有可能符合条件的度数为()A.60°和135° B.60°和105° C.105°和45° D.以上都有可能8.下列命题中,真命题是()①平面内,过一点能且只能作一条直线与已知直线垂直;②若,则;③一个角的余角比这个角的补角小;④不相交的两条直线叫平行线.A.①和② B.①和③ C.①②③ D.①②③④9.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,,则∠E的度数是()A.30° B.40° C.60° D.70°10.如图,AB∥CD,∠EBF=∠FBA,∠EDG=∠GDC,∠E=45°,则∠H为()A.22° B.22.5° C.30° D.45°二、填空题11.已知,点、分别为、上的点,点、、为、内部的点,连接、、、、、,于,,,平分,平分,则(小于平角)的度数为______.12.如图,已知,,,则_________13.如图,△ABC的边长AB=3cm,BC=4cm,AC=2cm,将△ABC沿BC方向平移acm(a<4cm),得到△DEF,连接AD,则阴影部分的周长为_______cm.14.如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连结AB.∠ABM的平分线BC交PQ于点C,连结AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=∠DAE,则∠ACD的度数是_____.15.如图①:MA1∥NA2,图②:MA11NA3,图③:MA1∥NA4,图④:MA1∥NA5,……,则第n个图中的∠A1+∠A2+∠A3+…+∠An+1______.(用含n的代数式表示)16.如图,直线,将含有角的三角板的直角顶点放在直线上,若,则的度数为________17.如图所示,,则的度数为______.18.已知,,,,且,请直接写出、、的数量关系________.19.如图,△ABC沿AB方向平移3个单位长度后到达△DEF的位置,BC与DF相交于点O,连接CF,已知△ABC的面积为14,AB=7,S△BDO﹣S△COF=___.20.一副直角三角板叠放如图①,.现将含角的三角板固定不动,把含角的三角板(其中)绕顶点A顺时针旋转角.(1)如图②,当______度时,边和边所在的直线互相垂直;(2)当旋转角在的旋转过程中,使得两块三角板至少有一组对应边(所在的直线)互相平行,此时符合条件的______.三、解答题21.已知,AB∥DE,点C在AB上方,连接BC、CD.(1)如图1,求证:∠BCD+∠CDE=∠ABC;(2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系;(3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.22.如图1,已知直线m∥n,AB是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB.(1)如图1,若∠OPQ=82°,求∠OPA的度数;(2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由.23.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质,可得∠APC=∠APE+∠CPE=50°+60°=110°.问题解决:(1)如图2,AB∥CD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P在线段MN上运动时(不与点M、N重合),∠PAB=α,∠PCD=β,判断∠APC、α、β之间的数量关系并说明理由;(2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时.请直接写出∠APC、α、B之间的数量关系;(3)如图3,AB∥CD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,∠BAP和∠DCP的平分线交于点Q.若∠APC=116°,请结合(2)中的规律,求∠AQC的度数.24.已知AB∥CD,∠ABE与∠CDE的角分线相交于点F.(1)如图1,若BM、DM分别是∠ABF和∠CDF的角平分线,且∠BED=100°,求∠M的度数;(2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度数;(3)若∠ABM=∠ABF,∠CDM=∠CDF,请直接写出∠M与∠BED之间的数量关系25.已知:AB∥CD,截线MN分别交AB、CD于点M、N.(1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足+(β﹣60)2=0,求∠BEM的度数;(2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由;(3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为(直接写出答案).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分别过、作的平行线和,根据平行线的性质和角平分线的性质可用和分别表示出和,从而可找到和的关系,结合条件可求得.【详解】解:如图,分别过、作的平行线和,,,,,,,,,又,,,,故选:A.【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补,④,.2.D解析:D【分析】根据平移的性质逐一判定即可.【详解】解:∵将ABC沿BC向右平移2个单位得到DEF,∴ACDF,AC=DF,AB=DE,BC=EF,AD=BE=CF=2,∠BAC=∠EDF=90°,∴ED⊥DF,四边形ABFD的周长=AB+BC+CF+DF+AD=12+2+2=16.∵S△ABC=S△DEF,∴S△ABC﹣S△OEC=S△DEF﹣S△OEC,∴S四边形ABEO=S四边形CFDO,即结论正确的有4个.故选:D.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.也考查了平移的距离以及图形的面积.3.D解析:D【分析】由题意根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α.(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β.(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β.(5)(6)当点E在CD的下方时,同理可得∠AEC=α-β或β-α.综上所述,∠AEC的度数可能为β-α,α+β,α-β,360°-α-β,即①②③④.故选:D.【点睛】本题主要考查平行线的性质的运用,解题时注意两直线平行,同位角相等;两直线平行,内错角相等以及分类讨论.4.A解析:A【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】解:①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故本选项正确;②无法证明CA平分∠BCG,故本选项错误;③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故本选项正确;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+(∠ABC+∠ACB)=135°,∴∠DFE=360°﹣135°﹣90°=135°,∴∠DFB=45°=∠CGE,故本选项正确.故选:A.【点睛】本题考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.5.B解析:B【分析】根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据余角与补角的定义对③进行判断;根据三角形外角性质对④进行判断.【详解】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;一个角的余角一定小于这个角的补角,所以③正确;三角形的外角大于任何一个与之不相邻的一个内角,所以④错误.故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.C解析:C【分析】利用平行线的性质,可证得∠2=∠3,利用已知可证得∠1+∠3=90°,求出∠3的度数,进而求出∠2的度数.【详解】解:如图∵a//b∴∠2=∠3,∵∠1+∠3=180°-90°=90°∴∠3=90°-∠1=90°-25°=65°∴∠2=65°.故选C.【点睛】本题主要考查了平行线的性质,灵活运用“两直线平行、同位角相等”是解答本题的关键.7.D解析:D【分析】根据题意画出图形,再由平行线的性质定理即可得出结论.【详解】解:如图当∥时,;当∥时,;当∥时,∵,∴;当∥时,∵,∴.故选:.【点睛】本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.8.B解析:B【分析】根据题意逐项判断,根据真命题的定义即可求解.【详解】解:①平面内,过一点能且只能作一条直线与已知直线垂直,原命题判断正确,是真命题,符合题意;②若,则,原命题判断错误,是假命题,不合题意;③设这个角为x°,则它的余角为(90-x)°,补角为(180-x)°,所以它的余角比它的补角小90°,故原命题判断正确,是真命题,符合题意;④平面内不相交的两条直线叫平行线,原命题判断错误,是假命题,不合题意.故选:B【点睛】本题考查了真命题与假命题的判断,垂线的性质,有理数的乘法法则,余角、补角的定义,平行线的定义,熟知相关知识是解题的关键,一般情况下,说明一个命题是真命题,要进行证明,说明一个命题是假命题,可以进行证明,也可以举出反例进行说明.9.A解析:A【分析】过点作,先根据平行线的性质可得,再根据平行公理推论、平行线的性质可得,然后根据角的和差即可得.【详解】解:如图,过点作,,,,,,,,,故选:A.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键.10.B解析:B【分析】过作,过作,利用平行线的性质解答即可.【详解】解:过作,过作,,,,,,,,,,,.故选:B.【点睛】此题考查平行线的性质,关键是作出辅助线,利用平行线的性质解答.二、填空题11.【分析】过点,做平行于,根据平行线的传递性及性质得,同理得出,令,则,,则,通过等量关系先计算出,再根据角平分线的性质及等量代换进行求解.【详解】解:过点,做平行于,如下图:,,则,解析:【分析】过点,做平行于,根据平行线的传递性及性质得,同理得出,令,则,,则,通过等量关系先计算出,再根据角平分线的性质及等量代换进行求解.【详解】解:过点,做平行于,如下图:,,则,,同理可得:,令,则,,则,则,,,,平分,平分,,,故答案是:.【点睛】本题考查了平行线的性质、角平分线的性质,解题的关键是添加适当的辅助线,找到角之间的关系,利用等量代换的思想进行计算求解.12.90°【分析】根据AB∥CF,可得出∠B和∠BCF的关系,根据CF∥DE,可得出∠FED和∠D的关系,合并即可得出∠D―∠B的大小【详解】∵AB∥CF,∴∠B=∠BCF∵CF∥DE∴∠解析:90°【分析】根据AB∥CF,可得出∠B和∠BCF的关系,根据CF∥DE,可得出∠FED和∠D的关系,合并即可得出∠D―∠B的大小【详解】∵AB∥CF,∴∠B=∠BCF∵CF∥DE∴∠FCD+∠D=180°∴∠FCD+∠D-∠B=180°-∠BCF,化简得:∠D-∠B=180°-(∠BCF+∠FCD)∵∠BCD=90°,∴∠BCF+∠FCD=90°∴∠D―∠B=90°故答案为:90°【点睛】本题考查平行线的性质,解题关键是将∠BCD分为∠BCF和∠FCD,然后利用平行线的性质进行角度转换.13.9【分析】根据平移的特点,可直接得出AC、DE、AD的长,利用EC=BC-BE可得出EC的长,进而得出阴影部分周长.【详解】∵AB=3cm,BC=4cm,AC=2cm,将△ABC沿BC方向平解析:9【分析】根据平移的特点,可直接得出AC、DE、AD的长,利用EC=BC-BE可得出EC的长,进而得出阴影部分周长.【详解】∵AB=3cm,BC=4cm,AC=2cm,将△ABC沿BC方向平移acm∴DE=AB=3cm,BE=acm∴EC=BC-BE=(4-a)cm∴阴影部分周长=2+3+(4-a)+a=9cm故答案为:9【点睛】本题考查平移的特点,解题关键是利用平移的性质,得出EC=BC-BE.14.27°.【分析】延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°.【详解】解:延长FA与直线MN交于点K,由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD解析:27°.【分析】延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°.【详解】解:延长FA与直线MN交于点K,由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD)=45°-∠FAD=45°-(90°-∠AFD)=∠AFD,因为MN∥PQ,所以∠AFD=∠BKA=90°-∠KBA=90°-(180°-∠ABM)=∠ABM-90°,所以∠ACD=∠AFD=(∠ABM-90°)=∠BCD-45°,即∠BCD-∠ACD=∠BCA=45°,所以∠ACD=90°-(45°+∠EAD)=45°-∠EAD=45°-∠BCA=45°-18°=27°.故∠ACD的度数是:27°.【点睛】本题利用平行线、垂直、角平分线综合考查了角度的求解.15.【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2解析:【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2×180∘,如图③中,∠A1+∠A2+∠A3+∠A4=540∘=3×180∘,…,第n个图,∠A1+∠A2+∠A3+…+∠An+1学会从=,故答案为.点睛:平行线的性质.16.【解析】试题分析:过B作BE∥m,则根据平行公理及推论可知l∥BE,然后可证明得到∠1+∠2=∠ABC=45°,因此可求得∠2=20°.故答案为:20.解析:【解析】试题分析:过B作BE∥m,则根据平行公理及推论可知l∥BE,然后可证明得到∠1+∠2=∠ABC=45°,因此可求得∠2=20°.故答案为:20.17.125°【分析】结合题意,根据对顶角相等的性质,通过证明,得,再根据补角的性质计算,即可得到答案.【详解】如图:∵,且∴∴∴∴故答案为:125°.【点睛】本题考查了解析:125°【分析】结合题意,根据对顶角相等的性质,通过证明,得,再根据补角的性质计算,即可得到答案.【详解】如图:∵,且∴∴∴∴故答案为:125°.【点睛】本题考查了平行线、对顶角、补角的知识;解题的关键是熟练掌握平行线的性质,从而完成求解.18.(上式变式都正确)【分析】过点E作,过点F作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图解析:(上式变式都正确)【分析】过点E作,过点F作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图所示,过点E作,过点F作,∵,∴,∵,∴,∵,∴,∵,∴,∴,∴,∵,,,且,∴,故答案为:.【点睛】题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相应的角的关系是解题关键.19.2【分析】如图,连接CD,过点C作CG⊥AB于G.利用三角形面积公式求出CG,再根据S△BDO﹣S△COF=S△CDB﹣S△CDF=求解即可.【详解】解:如图,连接CD,过点C作CG⊥AB于解析:2【分析】如图,连接CD,过点C作CG⊥AB于G.利用三角形面积公式求出CG,再根据S△BDO﹣S△COF=S△CDB﹣S△CDF=求解即可.【详解】解:如图,连接CD,过点C作CG⊥AB于G.∵S△ABC=•AB•CG,∴CG==4,∵AD=CF=3,AB=7,∴BD=AB﹣AD=7﹣3=4,∴S△BDO﹣S△COF=S△CDB﹣S△CDF=,故答案为:2.【点睛】本题考查三角形的面积,平移变换等知识,解题的关键是学会用转化的思想思考问题.20.60°或105°或135°【分析】(1)根据条件只需证BC⊥AE即可,α=∠DEA-∠BAC=45°-30°=15°;(2)分情况画出图形,根据平行线的性质计算即可.【详解】解:(解析:60°或105°或135°【分析】(1)根据条件只需证BC⊥AE即可,α=∠DEA-∠BAC=45°-30°=15°;(2)分情况画出图形,根据平行线的性质计算即可.【详解】解:(1)在△ABC中,AC⊥BC,AE与AC重合,则AE⊥BC,α=∠DEA-∠BAC=45°-30°=15°,∴当α=15°时,BC⊥AE.故答案为15;(2)当BC∥AD时,∠C=∠CAD=90°,∴α=∠BAD=90°-30°=60°;如图,当AC∥DE时,∠E=∠CAE=90°,则α=∠BAD=45°+60°=105°,此时∠BAE=90°-30°=60°=∠B,则AE∥BC;如图,当AB∥DE时,∠E=∠BAE=90°,∴α=∠BAD=45°+90°=135°;综上:符合条件的α为60°或105°或135°,故答案为:(1)15;(2)60°或105°或135°.【点睛】本题考查了平行线的性质,三角板的角度计算,正确确定△ABC旋转的过程中可以依次出现几次平行的情况是关键.三、解答题21.(1)证明见解析;(2);(3).【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质得出,,从而可得,再根据垂直的定义可得,由此即可得出结论;(3)过点作,延长至点,先根据平行线的性质可得,,从而可得,再根据角平分线的定义、结合(2)的结论可得,然后根据角的和差、对顶角相等可得,由此即可得出答案.【详解】证明:(1)如图,过点作,,,,,即,,;(2)如图,过点作,,,,,即,,,,,;(3)如图,过点作,延长至点,,,,,平分,平分,,由(2)可知,,,又,.【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.22.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QPB.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ.【详解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.23.(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)过点P作PE∥AB,根据平行线的判定与性质即可求解;(2)分点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;(3)过点P,Q分别作PE∥AB,QF∥AB,根据平行线的判定与性质及角的和差即可求解.【详解】解:(1)如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=α,∠CPE=β,∴∠APC=∠APE+∠CPE=α+β.(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,∵AB∥CD,∠PAB=α,∴∠1=∠PAB=α,∵∠1=∠APC+∠PCD,∠PCD=β,∴α=∠APC+β,∴∠APC=α-β;如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,∵AB∥CD,∠PCD=β,∴∠2=∠PCD=β,∵∠2=∠PAB+∠APC,∠PAB=α,∴β=α+∠APC,∴∠APC=β-α;(3)如图3,过点P,Q分别作PE∥AB,QF∥AB,∵AB∥CD,∴AB∥QF∥PE∥CD,∴∠BAP=∠APE,∠PCD=∠EPC,∵∠APC=116°,∴∠BAP+∠PCD=116°,∵AQ平分∠BAP,CQ平分∠PCD,∴∠BAQ=∠BAP,∠DCQ=∠PCD,∴∠BAQ+∠DCQ=(∠BAP+∠PCD)=58°,∵AB∥QF∥CD,∴∠BAQ=∠AQF,∠DCQ=∠CQF,∴∠AQF+∠CQF=∠BA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论