内蒙古巴林右旗大板第三中学2025届高二上数学期末考试模拟试题含解析_第1页
内蒙古巴林右旗大板第三中学2025届高二上数学期末考试模拟试题含解析_第2页
内蒙古巴林右旗大板第三中学2025届高二上数学期末考试模拟试题含解析_第3页
内蒙古巴林右旗大板第三中学2025届高二上数学期末考试模拟试题含解析_第4页
内蒙古巴林右旗大板第三中学2025届高二上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古巴林右旗大板第三中学2025届高二上数学期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线,过点作抛物线的两条切线,点为切点.若的面积不大于,则的取值范围是()A. B.C. D.2.已知双曲线C:-=1(a>b>0)的左焦点为F1,若过原点倾斜角为的直线与双曲线C左右两支交于M、N两点,且MF1NF1,则双曲线C的离心率是()A.2 B.C. D.3.下列命题错误的是()A.命题“若,则”的逆否命题为“若,则”B.命题“若,则”的否命题为“若,则”C.若命题p:或;命题q:或,则是的必要不充分条件D.“”是“”的充分不必要条件4.若公差不为0的等差数列的前n项和是,,且,,为等比数列,则使成立的最大n是()A.6 B.10C.11 D.125.在四面体中,点G是的重心,设,,,则()A. B.C. D.6.双曲线的离心率为,焦点到渐近线的距离为,则双曲线的焦距等于A. B.C. D.7.若函数的导函数在区间上是减函数,则函数在区间上的图象可能是()A. B.C. D.8.为了了解某地区的名学生的数学成绩,打算从中抽取一个容量为的样本,现用系统抽样的方法,需从总体中剔除个个体,在整个过程中,每个个体被剔除的概率和每个个体被抽取的概率分别为()A. B.C. D.9.函数在区间(0,e)上的极小值为()A.-e B.1-eC.-1 D.110.下列命题中正确的是()A.若为真命题,则为真命题B.在中“”是“”的充分必要条件C.命题“若,则或”的逆否命题是“若或,则”D.命题,使得,则,使得11.已知P是椭圆上的一点,是椭圆的两个焦点且,则的面积是()A. B.2C. D.112.在如图所示的茎叶图中,若甲组数据的众数为16,则乙组数据的平均数为()A.12 B.10C.8 D.6二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前项和为,且满足,,则___________.14.已知抛物线:,过焦点作倾斜角为的直线与交于,两点,,在的准线上的投影分别为,两点,则__________.15.某中学高一年级有420人,高二年级有460人,高三年级有500人,用分层抽样的方法抽取部分样本,若从高一年级抽取21人,则从高三年级抽取的人数是__________16.已知数列满足,则_____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的图象在点处的切线与直线平行(是自然对数的底数).(1)求的值;(2)若在上恒成立,求实数的取值范围.18.(12分)如图,在直三棱柱中,,是中点.(1)求点到平面的的距离;(2)求平面与平面夹角的余弦值;19.(12分)设函数(1)若,求函数的单调区间;(2)若函数有两个不同的零点,求实数的取值范围20.(12分)在平面直角坐标系中,已知椭圆过点,且离心率.(1)求椭圆的方程;(2)直线的斜率为,直线l与椭圆交于两点,求的面积的最大值.21.(12分)如图,在三棱锥A-BCD中,O为线段BD中点,是边长为1正三角形,且OA⊥BC,AB=AD(1)证明:平面ABD⊥平面BCD;(2)若|OA|=1,,求平面BCE与平面BCD的夹角的余弦值22.(10分)如图,在几何体中,底面是边长为2的正三角形,平面,,且是的中点.(1)求证:平面;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题意,设,直线方程为,则由点到直线的距离公式求出点到直线的距离,再联立直线与抛物线方程,由韦达定理及弦长公式求出,进而可得,结合即可得答案.【详解】解:因为抛物线的性质:在抛物线上任意一点处的切线方程为,设,所以在点处的切线方程为,在点B处的切线方程为,因为两条切线都经过点,所以,,所以直线的方程为,即,点到直线的距离为,联立直线与抛物线方程有,消去得,由得,,由韦达定理得,所以弦长,所以,整理得,即,解得,又所以.故选:C.2、C【解析】根据双曲线和直线的对称性,结合矩形的性质、双曲线的定义、离心率公式、余弦定理进行求解即可.【详解】设双曲线的右焦点为F2,过原点倾斜角为的直线为,设M、N分别在第三、第一象限,由双曲线和直线的对称性可知:M、N两点关于原点对称,而MF1NF1,因此四边形是矩形,而,所以是等边三角形,故,因此,因为,所以,在等腰三角形中,由余弦定理可知:,由矩形的性质可知:,由双曲线的定义可知:,故选:C【点睛】关键点睛:利用矩形的性质、双曲线的定义是解题的关键.3、C【解析】根据逆否命题的定义可判断A;根据否命题的定义可判断B;求出、,根据充分条件和必要条件的概念可以判断C;解出不等式,根据充分条件和必要条件的概念可判断D.【详解】命题“若,则”的逆否命题为“若,则”,故A正确;命题“若,则”的否命题为“若,则”,故B正确;若命题p:或;命题q:或,则:-1≤x≤1是:-2≤x≤1的充分不必要条件,故C错误;或x<1,故“”是“”的充分不必要条件,故D正确.故选:C.4、C【解析】设等差数列的公差为d,根据,且,,为等比数列,求得首项和公差,再利用前n项和公式求解.【详解】设等差数列的公差为d,因为,且,,为等比数列,所以,解得或(舍去),则,所以,解得,所以使成立的最大n是11,故选:C5、B【解析】结合重心的知识以及空间向量运算求得正确答案.【详解】设是中点,.故选:B6、D【解析】不妨设双曲线方程为,则,即设焦点为,渐近线方程为则又解得.则焦距为.选:D7、A【解析】根据导数概念和几何意义判断【详解】由题意得,图象上某点处的切线斜率随增大而减小,满足要求的只有A故选:A8、D【解析】根据每个个体被抽取的概率都是相等的、被剔除的概率也都是相等的,分别由剔除的个数和抽取的样本容量除以总体个数即可求解.【详解】根据系统抽样的定义和方法可知:每个个体被抽取的概率都是相等的,每个个体被剔除的概率也都是相等的,所以每个个体被剔除的概率为,每个个体被抽取的概率为,故选:D.9、D【解析】求导判断函数的单调性即可求解【详解】的定义域为(0,+∞),,令,得x=1,当x∈(0,1)时,,单调递减,当x∈(1,e)时,,单调递增,故在x=1处取得极小值.故选:D.10、B【解析】A选项,当一真一假时也满足条件,但不满足为真命题;B选项,可以使用正弦定理和大边对大角,大角对大边进行证明;C选项,利用逆否命题的定义进行判断,D选项,特称命题的否定,把存在改为任意,把结论否定,故可判断D选项.【详解】若为真命题,则可能均为真,或一真一假,则可能为真命题,也可能为假命题,故A错误;在中,由正弦定理得:,若,则,从而,同理,若,则由正弦定理得,,所以,故在中“”是“”的充分必要条件,B正确;命题“若,则或”的逆否命题是“若且,则”,故C错误;命题,使得,则,使得,故D错误.故选:B11、A【解析】设,先求出m、n,再利用面积公式即可求解.【详解】在中,设,则,解得:.因为,所以,所以的面积是.故选:A12、A【解析】根据众数的概念,求得的值,再根据平均数的计算公式,即可求解.【详解】由题意,甲组数据的众数为16,得,所以乙组数据的平均数为故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】当时,,可得,可得数列隔项成等比数列,即所以数列的奇数项和偶数项分别是等比数列,分别求和,即可得解.【详解】因为,,所以,当时,,∴,所以数列的奇数项和偶数项分别是等比数列,所以.故答案为:.14、【解析】设,则,将直线方程与抛物线方程联立,结合韦达定理即得.【详解】由抛物线:可知则焦点坐标为,∴过焦点且斜率为的直线方程为,化简可得,设,则,由可得,所以则故答案为:15、25【解析】由条件先求出抽样比,从而可求出从高三年级抽取的人数.【详解】由题意抽样比例:则从高三年级抽取的人数是人故答案为:2516、【解析】找到数列的规律,由此求得.【详解】依题意,,,所以数列是以为周期的周期数列,.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)求出函数的导函数,根据题意结合导数的几何意义列出方程,解之即可得解;(2)在上恒成立,即在上恒成立,从而,令,利用导数求出函数的最小值,即可求得实数的取值范围【小问1详解】解:,因为函数的图象在点处的切线与直线平行,所以,解得;【小问2详解】解:在上恒成立,即在上恒成立,,,令,则,当时,;当时,,函数在上单调递减,有上单调递增,,,即实数的取值范围是18、(1)(2)【解析】(1)以为原点,为轴,为轴,为轴建立空间直角坐标系,求出平面的法向量为,再利用公式计算即可;(2)易得平面的法向量为,设平面与平面的夹角为,再利用计算即可小问1详解】解:(1)以为原点,为轴,为轴,为轴建立空间直角坐标系所以因为,设平面的法向量为,则有,得,令则,所以可以取,设点到平面的距离为,则,所以点到平面的的距离的距离为;【小问2详解】(2)因为平面,取平面的法向量为设平面与平面的夹角为,所以平面与平面夹角的余弦值19、(1)的单调递减区间为,单调递增区间为;(2).【解析】(1)求出,进而判断函数的单调性,然后讨论符号后可得函数的单调区间;(2)令,则有两个不同的零点,利用导数讨论的单调性并结合零点存在定理可得实数的取值范围.【小问1详解】当时,,,记,则,所以在上单调递增,又,所以当时,;当时,,所以单调递减区间为,单调递增区间为【小问2详解】令,得,记,则,令得,列表得.x0↘极小值↗要使在上有两个零点,则,所以且函数在和上各有一个零点当时,,,,则,故上无零点,与函数在上有一个零点矛盾,故不满足条件所以,又因为,所以考虑,设,,则,则在上单调递减,故当时,,所以,且,因为,所以,由零点存在定理知在和上各有一个零点综上可知,实数a的取值范围为【点睛】方法点睛:利用导数研究零点问题:(1)确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可用导数知识确定极值点和单调区间从而确定其大致图象;(2)方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理.可以通过构造函数的方法,把问题转化为研究构造的函数的零点问题;(3)利用导数硏究函数零点或方程根,通常有三种思路:①利用最值或极值研究;②利用数形结合思想研究;③构造辅助函数硏究.20、(1);(2)2.【解析】(1)由离心率,得到,再由点在椭圆上,得到,联立求得,即可求得椭圆的方程.(2)设的方程为,联立方程组,根据根系数的关系和弦长公式,以及点到直线的距离公式,求得,结合基本不等式,即可求解.【详解】(1)由题意,椭圆的离心率,即,可得,又椭圆过点,可得,将代入,可得,故椭圆方程为.(2)设的方程为,设点,联立方程组,消去y整理,得,所以,又直线与椭圆相交,所以,解得,则,点P到直线的距离,所以,当且仅当,即时,的面积取得最大值为2.【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的综合应用,解答此类题目,通常联立直线方程与椭圆方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.21、(1)证明见解析(2)【解析】(1)由题意可得OA⊥平面BCD,从而可证明.(2)作OF⊥BD交BC于点F,如图,以O为坐标原点,分别以OF,OD,OA所在直线轴建立空间直角坐标系,利用向量法可求解.【小问1详解】因为AB=AD,O为BD中点,所以OA⊥BD因为OA⊥BC,且BD,BC平面BCD,BD∩BC=B,所以OA⊥平面BCD又因为OA平面ABD,所以平面ABD⊥平面BCD【小问2详解】作OF⊥BD交BC于点F,如图,以O为坐标原点,分别以OF,OD,OA所在直线轴建立空间直角坐标系因为三角形OCD为边长为1的正三角形,且OA=OB=1,DE=2AE所以A(0,0,1),B(0,-1,0),设平面EBC的法向量为=()因为⊥BE,⊥BC,所以令,则,,所以已知平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论