版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届海南市重点中学高一上数学期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.在下列区间中,函数f(x)=ex+2x﹣5的零点所在的区间为()A.(﹣1,0) B.(0,1)C.(1,2) D.(2,3)3.甲乙两名同学6次考试的成绩统计如右图,甲乙两组数据的平均数分别为,标准差分别为则A. B.C. D.4.设函数,则下列结论错误的是()A.的一个周期为B.的图像关于直线对称C.的图像关于点对称D.在有3个零点5.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是()A. B.C. D.6.函数的零点所在区间是()A. B.C. D.7.幂函数在上是减函数.则实数的值为A.2或 B.C.2 D.或18.函数在区间上的简图是()A. B.C. D.9.为了得到函数的图像,只需将函数的图像上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度10.已知函数的图像如图所示,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的零点个数为___12.已知,函数,若,则______,此时的最小值是______.13.若函数关于对称,则常数的最大负值为________14.已知圆心角为的扇形的面积为,则该扇形的半径为____.15.若实数x,y满足,且,则的最小值为___________.16.已知,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.国际上常用恩格尔系数r来衡量一个国家或地区的人民生活水平.根据恩格尔系数的大小,可将各个国家或地区的生活水平依次划分为:贫困,温饱,小康,富裕,最富裕等五个级别,其划分标准如下表:级别贫困温饱小康富裕最富裕标准r>60%50%<r≤60%40%<r=50%30%<r≤40%r≤30%某地区每年底计算一次恩格尔系数,已知该地区2000年底的恩格尔系数为60%.统计资料表明:该地区食物支出金额年平均增长4%,总支出金额年平均增长.根据上述材料,回答以下问题.(1)该地区在2010年底是否已经达到小康水平,说明理由;(2)最快到哪一年底,该地区达到富裕水平?参考数据:,,,18.已知全集U={1,2,3,4,5,6,7,8},A={x|x2-3x+2=0},B={x|1≤x≤5,x∈Z},C={x|2<x<9,x∈Z}.求(1)A∪(B∩C);(2)(∁UB)∪(∁UC)19.已知是定义在上的偶函数,当时,.(1)求在时的解析式;(2)若,在上恒成立,求实数的取值范围.20.已知的数(1)有解时,求实数的取值范围;(2)当时,总有,求定的取值范围21.已知函数(I)求函数图象的对称轴方程;(II)求函数的最小正周期和值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】分析】首先根据可得:或,再判断即可得到答案.【详解】由可得:或,即能推出,但推不出“”是“”的必要不充分条件故选:B【点睛】本题主要考查必要不充分条件的判断,同时考查根据三角函数值求角,属于简单题.2、C【解析】由零点存在性定理即可得出选项.【详解】由函数为连续函数,且,,所以,所以零点所在的区间为,故选:C【点睛】本题主要考查零点存在性定理,在运用零点存在性定理时,函数为连续函数,属于基础题.3、C【解析】利用甲、乙两名同学6次考试的成绩统计直接求解【详解】由甲乙两名同学6次考试的成绩统计图知:甲组数据靠上,乙组数据靠下,甲组数据相对集中,乙组数据相对分散分散布,由甲乙两组数据的平均数分别为,标准差分别为得,故选【点睛】本题考查命题真假的判断,考查平均数、的定义和性质等基础知识,考查运算求解能力,是基础题4、D【解析】利用辅助角公式化简,再根据三角函数的性质逐个判断即可【详解】,对A,最小周期为,故也为周期,故A正确;对B,当时,为的对称轴,故B正确;对C,当时,,又为的对称点,故C正确;对D,则,解得,故在内有共四个零点,故D错误故选:D5、A【解析】由图象知函数的定义域排除选项选项B、D,再根据不成立排除选项C,即可得正确选项.【详解】由图知的定义域为,排除选项B、D,又因为当时,,不符合图象,所以排除C,故选:A【点睛】思路点睛:排除法是解决函数图象问题的主要方法,根据函数的定义域、与坐标轴的交点、函数值的符号、单调性、奇偶性等,从而得出正确结果.6、B【解析】判断函数的单调性,根据函数零点存在性定理即可判断.【详解】函数的定义域为,且函数在上单调递减;在上单调递减,所以函数为定义在上的连续减函数,又当时,,当时,,两函数值异号,所以函数的零点所在区间是,故选:B.7、B【解析】由题意利用幂函数的定义和性质可得,由此解得的值【详解】解:由于幂函数在时是减函数,故有,解得,故选:【点睛】本题主要考查幂函数的定义和性质应用,属于基础题8、B【解析】分别取,代入函数中得到值,对比图象即可利用排除法得到答案.【详解】当时,,排除A、D;当时,,排除C.故选:B.9、B【解析】利用诱导公式,的图象变换规律,得出结论【详解】解:为了得到函数的图象,只需将函数图象上所有的点向右平移个单位长度,故选:B10、B【解析】本题首先可以通过图像得出函数的周期,然后通过函数周期得出的值,再然后通过函数过点求出的值,最后将带入函数解析式即可得出结果【详解】因为由图像可知,解得,所以,,因为由图像可知函数过点,所以,解得,取,,,所以,故选B【点睛】本题考查了三角函数的相关性质,主要考查了三角函数图像的相关性质,考查了三角函数的周期性的求法,考查计算能力,考查数形结合思想,是中档题二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】当x≤0时,令函数值为零解方程即可;当x>0时,根据零点存在性定理判断即可.【详解】当x≤0时,,∵,故此时零点为;当x>0时,在上单调递增,当x=1时,y<0,当x=2时,y>0,故在(1,2)之间有唯一零点;综上,函数y在R上共有2个零点.故答案为:2.12、①.②.【解析】直接将代入解析式即可求的值,进而可得的解析式,再分段求最小值即可求解.【详解】因为,所以,所以,当时,对称轴为,开口向上,此时在单调递增,,当时,,此时时,最小值,所以最小值为,故答案为:;.13、【解析】根据函数的对称性,利用,建立方程进行求解即可【详解】若关于对称,则,即,即,则,则,,当时,,故答案为:14、4【解析】由扇形的面积公式列方程即可求解.【详解】扇形的面积,即,解得:.故答案为:.15、8【解析】由给定条件可得,再变形配凑借助均值不等式计算作答.【详解】由得:,又实数x,y满足,则,当且仅当,即时取“=”,由解得:,所以当时,取最小值8.故答案为:8【点睛】思路点睛:在运用基本不等式时,要特别注意“拆”、“拼”、“凑”等技巧,使用其满足基本不等式的“一正”、“二定”、“三相等”的条件.16、【解析】根据已知条件求得的值,由此求得的值.【详解】依题意,两边平方得,而,所以,所以.由解得,所以.故答案为:【点睛】知道其中一个,可通过同角三角函数的基本关系式求得另外两个,在求解过程中要注意角的范围.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)已经达到,理由见解析(2)2022年【解析】(1)根据该地区食物支出金额年平均增长4%,总支出金额年平均增长的比例列式求解,判断十年后是否达到即可.(2)假设经过n年,该地区达到富裕水平,列式,利用指对数互化解不等式即可.【小问1详解】该地区2000年底的恩格尔系数为%,则2010年底的思格尔系数为因为所以1,则所以所以该地区在2010年底已经达到小康水平【小问2详解】从2000年底算起,设经过n年,该地区达到富裕水平则,故,即化为因为,则In,所以因为所以所以,最快到2022年底,该地区达到富裕水平18、(1)A∪(B∩C)={1,2,3,4,5}.(2)(∁UB)∪(∁UC)={1,2,6,7,8}【解析】(1)先求集合A,B,C;再求B∩C,最后求A∪(B∩C)(2)先求∁UB,∁UC;再求(∁UB)∪(∁UC)试题解析:解:(1)依题意有:A={1,2},B={1,2,3,4,5},C={3,4,5,6,7,8},∴B∩C={3,4,5},故有A∪(B∩C)={1,2}∪{3,4,5}={1,2,3,4,5}(2)由∁UB={6,7,8},∁UC={1,2};故有(∁UB)∪(∁UC)={6,7,8}∪{1,2}={1,2,6,7,8}19、(1);(2).【解析】(1)利用函数的奇偶性结合条件即得;(2)由题可知在上恒成立,利用函数的单调性可求,即得.【小问1详解】∵当时,,∴当时,,∴,又是定义在上的偶函数,∴,故当时,;【小问2详解】由在上恒成立,∴在上恒成立,∴又∵与在上单调递增,∴,∴,解得或,∴实数的取值范围为.20、(1);(2)【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 招投标及合同管理简答题大全
- 劳动合同书模板下载范本版
- Unit3Lesson13Beijingisgreat(课件)冀教版英语五年级上册
- 2024年度店铺经营权及合同权益转让合同3篇
- 二零二四年度设备购买与技术支持服务合同3篇
- 2024年度企业财务管理优化服务合同
- 人教版九年级化学第一单元2化学是一门以实验为基础的科学课时2对人体吸入的空气和呼出的气体的探究分层作业课件
- 人教版九年级化学第二单元1空气课时1空气的成分纯净物和混合物分层作业课件
- 人教版九年级化学第五单元化学方程式1质量守恒定律课时3化学方程式教学课件
- 装修木工合同分包协议书模板
- 2024新版《药品管理法》培训课件
- 高空作业时的安全注意事项
- 智研咨询发布:中国铜铝复合板带行业竞争格局及发展前景研究报告
- 初三毕业班课件2024-2025学年期中家长会
- 深圳2020-2024年中考英语真题复习专题01 语法填空(解析版)
- 更换阀门施工方案
- 企业财务会计电子教案 10存货核算4
- 定期体检 预防常见病 课件 2024-2025学年人教版(2024)初中体育与健康七年级全一册
- 现代服务业课件
- 2024年国家公务员考试《行测》真题卷(行政执法)答案和解析
- 生猪屠宰兽医卫生检验人员理论考试题库及答案
评论
0/150
提交评论