人教版八年级下册数学驻马店数学期末试卷测试卷(解析版)_第1页
人教版八年级下册数学驻马店数学期末试卷测试卷(解析版)_第2页
人教版八年级下册数学驻马店数学期末试卷测试卷(解析版)_第3页
人教版八年级下册数学驻马店数学期末试卷测试卷(解析版)_第4页
人教版八年级下册数学驻马店数学期末试卷测试卷(解析版)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版八年级下册数学驻马店数学期末试卷测试卷(解析版)一、选择题1.要使式子有意义,则x的取值范围是()A.x>0 B.x≥1 C.x≥–1 D.x≤12.下列各组长度的线段能构成直角三角形的是直()A.,, B.,, C.,, D.,,3.下列命题不是真命题的是()A.等边三角形的角平分线相等 B.线段的垂直平分线上的点到线段两端的距离相等C.有两个角相等的三角形是等腰三角形 D.一组对边平行的四边形是平行四边形4.某校有甲、乙两个合唱队,两队队员的平均身高都为,标准差分别是、,且,则两个队的队员的身高较整齐的是()A.甲队 B.两队一样整齐 C.乙队 D.不能确定5.如图,在中,是上一点,已知,则的长为()A. B. C. D.6.如图,菱形的边的垂直平分线交于点,交于点,连接.当时,则()A. B. C. D.7.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形.如图所示,若AF=5,CE=12,则该三角形的面积为()A.60 B.65 C.120 D.1308.一个容器内有进水管和出水管,开始4min内只进水不出水,在随后的8min内既进水又出水,第12min后只出水不进水.进水管每分钟的进水量和出水量每分钟的出水量始终不变,容器内水量(单位:L)与时间(单位:min)之间的关系如图所示.根据图象有下列说法:①进水管每分钟的进水量为5L;②时,;③当时,;④当时,,或.其中正确说法的个数是()A.1个 B.2个 C.3个 D.4个二、填空题9.若二次根式有意义,则x的取值范围是________.10.如图,菱形的对角线与相交于点.已知,.那么这个菱形的面积为__________.11.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b.若ab=4,大正方形的面积为16,则小正方形的边长为______.12.如图,在矩形ABCD中,E,F分别是边AB,BC上的点.将∠A,∠B,∠C按如图所示的方式向内翻折,EQ,EF,DF为折痕.若A,B,C恰好都落在同一点P上,AE=1,则ED=___.13.一次函数的图象经过点,那么______.14.如图,在中,,,当________时,四边形是菱形.15.如图,直线l1:y=x+2与x轴交于点A,与y轴交于点B.直线l2:y=4x﹣4与y轴交于点C,与x轴交于点D,直线l1,l2交于点P.若x轴上存在点Q,使以A、C、P、Q为顶点的四边形是平行四边形,则点Q的坐标是_____.16.如图,,,,,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点处,两条折痕与斜边AB分别交于点E、F,则线段的长为________.三、解答题17.计算:(1)2+-;(2);(3);(4)│1-│+(2019-50)0-(-).18.如图,一艘渔船正以30海里/时的速度由西向东追赶鱼群,在处看见小岛在船的北偏东60°方向上,40分钟后,渔船行至处,此时看见小岛在渔船的北偏东30°方向上.(1)求处与小岛之间的距离;(2)渔船到达处后,航向不变,继续航行多少时间与小岛的距离恰好为20海里?19.如图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点.A,B两点均在格点上,在给定的网格中,按下列要求画图:(1)在图①中,画出以AB为底边的等腰△ABC,并且点C为格点.(2)在图②中,画出以AB为腰的等腰△ABD,并且点D为格点.(3)在图③中,画出以AB为腰的等腰△ABE,并且点E为格点,所画的△ABE与图②中所画的△ABD不全等.20.在矩形中,,,对角线、交于点,一直线过点分别交、于点、,且,求证:四边形为菱形.21.[阅读材料]我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,为三角形和多边形的面积计算提供了新的方法和思路,在知道三角形三边的长而不知道高的情况下使用秦九韶公式可以更简便地求出面积,比如说在测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地求出答案,即三角形的三边长分别为a、b、c,则其面积S=(秦九韶公式),此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a、b、c,记p=,则其面积S=(海伦公式),虽然这两个公式形式上有所不同,但它们本质是等价的,计算各有优劣,它填补了中国数学史中的一个空白,从中可以看出中国古代已经具有很高的数学水平.[解决问题](1)当三角形的三边a=7,b=8,c=9时,请你从上面两个公式里,选择合适的公式计算出三角形的面积.(2)当三角形的三边a=,b=2,c=3时,请你从上面两个公式里,选择合适的公式计算出三角形的面积.22.学校决定采购一批气排球和篮球,已知购买2个气排球和2个篮球共需340元,购买2个气排球所需费用比购买2个篮球所需费用少140元.(1)求气排球和篮球的售价分别是多少(元/个)?(2)学校计划购进气排球和篮球共120个,其中气排球的数量不超过篮球数量的3倍,若设购买篮球x个,当x为何值时总费用最小,并说明理由.23.社团活动课上,数学兴趣小组的同学探索了这样的一个问题:如图,,点为边上一定点,点为边上一动点,以为一边在∠MON的内部作正方形,过点作,垂足为点(在点、之间),交与点,试探究的周长与的长度之间的等量关系该兴趣小组进行了如下探索:(动手操作,归纳发现)(1)通过测量图、、中线段、、和的长,他们猜想的周长是长的_____倍.请你完善这个猜想(推理探索,尝试证明)为了探索这个猜想是否成立,他们作了如下思考,请你完成后续探索过程:(2)如图,过点作,垂足为点则又四边形正方形,,则在与中,(类比探究,拓展延伸)(3)如图,当点在线段的延长线上时,直接写出线段、、与长度之间的等量关系为.24.请你根据学习函数的经验,完成对函数y=|x|﹣1的图象与性质的探究.下表给出了y与x的几组对应值.x…﹣3﹣2﹣10123…y…m10﹣1012…【探究】(1)m=;(2)在给出的平面直角坐标系中,描出表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象;(3)根据函数图象,当y随x的增大而增大时,x的取值范围是;【拓展】(4)函数y1=﹣|x|+1的图象与函数y=|x|﹣1的图象交于两点,当y1≥y时,x的取值范围是;(5)函数y2=﹣|x|+b(b>0)的图象与函数y=|x|﹣1的图象围成的四边形的形状是,该四边形的面积为18时,则b的值是.25.如图,在Rt中,,,,动点D从点C出发,沿边向点B运动,到点B时停止,若设点D运动的时间为秒.点D运动的速度为每秒1个单位长度.(1)当时,,;(2)用含t的代数式表示的长;(3)当点D在边CA上运动时,求t为何值,是以BD或CD为底的等腰三角形?并说明理由;(4)直接写出当是直角三角形时,t的取值范围.26.等腰Rt△ABC,CA=CB,D在AB上,CD=CE,CD⊥CE.(1)如图1,连接BE,求证:AD=BE.(2)如图2,连接AE,CF⊥AE交AB于F,T为垂足,①求证:FD=FB;②如图3,若AE交BC于N,O为AB中点,连接OC,交AN于M,连FM、FN,当,求OF2+BF2的最小值.【参考答案】一、选择题1.B解析:B【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【详解】解:由题意得,x−1≥0,解得x≥1.故选:B.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.2.A解析:A【分析】求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、302+402=502,能构成直角三角形,故选项正确;B、72+122≠132,不能构成直角三角形,故选项错误;C、52+92≠122,能构成直角三角形,故选项错误;D、32+42≠62,不能构成直角三角形,故选项错误.故选A.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.D解析:D【解析】【分析】根据等边三角形的性质、线段垂直平分线的性质定理、等腰三角形的判定定理、平行四边形的定义判断即可.【详解】解:A、等边三角形的角平分线相等,是真命题,不符合题意;B、线段的垂直平分线上的点到线段两端的距离相等,是真命题,不符合题意;C、有两个角相等的三角形是等腰三角形,是真命题,不符合题意;D、一组对边平行的四边形是平行四边形或梯形,本选项说法不是真命题,符合题意;故选:D.【点睛】本题考查了真假命题的判断,等边三角形,线段的垂直平分线,等腰三角形,平行四边形,掌握相关性质定理是解题的关键.4.C解析:C【解析】【分析】根据标准差的定义:方差的算术平方根,因此标准差越小,代表方差越小,即越稳定,由此求解即可.【详解】解:∵>,∴>,∴乙队的队员的身高较整齐故选C.【点睛】本题主要考查了标准差,解题的关键在于能够熟练掌握标准差的定义.5.C解析:C【分析】先根据勾股定理的逆定理得到△ABD是直角三角形,然后根据勾股定理求出CD即可.【详解】解:根据题意,在△ABD中,∵,∴△ABD是直角三角形,∴AD⊥BC,在△ACD中,AD=12,AC=15,∴;故选:C.【点睛】本题考查了勾股定理的逆定理和勾股定理,解题的关键是熟练掌握勾股定理的逆定理和利用勾股定理进行解直角三角形.6.B解析:B【解析】【分析】连接BF,根据菱形的对角线平分一组对角线可得∠BAC=50°,根据线段垂直平分线上的点到两端点的距离相等可得AF=BF,根据等边对等角可得∠FBA=∠FAB,再根据菱形的邻角互补求出∠ABC,然后求出∠CBF,最后根据菱形的对称性可得∠CDF=∠CBF.【详解】解:如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×100°=50°,∵EF是AB的垂直平分线,∴AF=BF,∴∠FBA=∠FAB=50°,∵菱形ABCD的对边AD∥BC,∴∠ABC=180°-∠BAD=180°-100°=80°,∴∠CBF=∠ABC-∠ABF=80°-50°=30°,由菱形的对称性,∠CDF=∠CBF=30°.故选:B.【点睛】本题考查了菱形的性质,线段垂直平分线上的点到两端点的距离相等的性质,等边对等角的性质,熟记各性质是解题的关键.7.A解析:A【解析】【分析】设小正方形的边长为x,则AB=5+x,BC=12+x,由全等三角形的性质可求AC得长,由勾股定理可求解小正方形的边长,进而可求解.【详解】解:设小正方形的边长为x,∵AF=5,CE=12,∴AB=5+x,BC=12+x,∵△AFM≌△ADM,△CDM≌△CEM,∴AD=AF=5,CD=CE=12,∴AC=AD+CD=5+12=17,在Rt△ABC中,AC2=AB2+BC2,∴172=(5+x)2+(12+x)2,解得x=3(负值已舍),∴AB=8,BC=15,∴△ABC的面积为:×8×15=60,故选:A.【点睛】本题主要考查了勾股定理,解一元二次方程,利用勾股定理求解小正方形的边长是解题的关键.8.C解析:C【分析】根据图象可知进水的速度为5(L/min),再根据第10分钟时容器内水量为27.5L可得出水的速度,从而求出第12min时容器内水量,利用待定系数法求出4≤x≤12时,y与x之间的函数关系式,再对各个选项逐一判断即可.【详解】解:由图象可知,进水的速度为:20÷4=5(L/min),故①说法正确;出水的速度为:5−(27.5−20)÷(10−4)=3.75(L/min),第12min时容器内水量为:20+(12−4)×(5−3.75)=30(L),故③说法正确;15÷3=3(min),12+(30−15)÷3.75=16(min),故当y=15时,x=3或x=16,故说法④错误;设4≤x≤12时,y与x之间的函数关系式为y=kx+b,根据题意,得,解得,所以4≤x≤12时,y=x+15,故说法②正确.所以正确说法的个数是3个.故选:C.【点睛】此题考查了一次函数的应用,解题时首先正确理解题意,利用数形结合的方法即可解决问题.二、填空题9.【解析】【分析】根据二次根式被开放数为非负数,分式的分母不为零求解即可.【详解】解:∵二次根式有意义,∴2-x>0,解得:x<2.故答案为:x<2.【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式被开放数为非负数是解题的关键.10.A解析:96【解析】【分析】根据菱形的性质可得AC⊥BD,然后利用勾股定理求出OB=8cm,得出BD=16cm,最后根据菱形的面积公式求解.【详解】∵四边形ABCD为菱形,∴AC⊥BD,OA=OC=AC=6cm,OB=OD,∴OB===8(cm),∴BD=2OB=16cm,S菱形ABCD=AC•BD=×12×16=96(cm2).故答案为:96.【点睛】本题考查了菱形的性质以及勾股定理,解答本题的关键是掌握菱形的两条对角线互相垂直的性质.11.【解析】【分析】由题意可知:中间小正方形的边长为a-b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】解:由题意可知:中间小正方形的边长为a-b,∵每一个直角三角形的面积为:ab=×4=2,∴4ab+=16,∴=16-8=8,∴a-b=2,故答案为:2.【点睛】本题考查勾股定理的应用,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.12.A解析:【分析】连接,根据折叠的性质得出三角形全等,根据三角形全等的性质得出对应边相等,由,利用等量代换分别求出.【详解】解:连接如下图所示:根据A,B,C恰好都落在同一点P上及折叠的性质,有,,,根据正方形的性质得:,,,,故答案是:.【点睛】本题考查了翻折的性质,三角形全等的性质,解题的关键是添加辅助线,通过等量代换的思想进行解答.13.【分析】直接把点代入一次函数,求出的值即可.【详解】解:一次函数的图象经过点,,解得.故答案为:.【点睛】本题考查了一次函数图象上点的坐标特点,解题的关键是掌握一次函数图象上各点的坐标一定适合此函数的解析式.14.A解析:16【分析】当四边形ABCD为菱形时,则有AC⊥BD,设AC、BD交于点O,结合平行四边形的性质可得AO=6,AB=10,利用勾股定理可求得BO,则可求得BD的长.【详解】解:如图,设AC、BD交于点O,当四边形ABCD为菱形时,则AC⊥BD,∵四边形ABCD为平行四边形,∴AO=AC=6,且AB=10,∴在Rt△AOB中,BO,∴BD=2BO=16,故答案为:16.【点睛】本题主要考查菱形的性质,掌握菱形的对角线互相垂直且平分是解题的关键.15.(4,0)【分析】根据一次函数的性质分别求得点A、点C、点P的坐标,然后结合平行四边形的性质求解.【详解】解:在y=x+2中,当y=0时,x+2=0,解得:x=-2,∴点A的坐标为(-2解析:(4,0)【分析】根据一次函数的性质分别求得点A、点C、点P的坐标,然后结合平行四边形的性质求解.【详解】解:在y=x+2中,当y=0时,x+2=0,解得:x=-2,∴点A的坐标为(-2,0),在y=4x-4中,当x=0时,y=-4,∴C点坐标为(0,-4),联立方程组,解得:,∴P点坐标为(2,4),设Q点坐标为(x,0),∵点Q在x轴上,∴以A、C、P、Q为顶点的四边形是平行四边形时,AQ和PC是对角线,∴,解得:x=4,∴Q点坐标为(4,0),故答案为:(4,0).【点睛】本题考查了一次函数的性质,平行四边形的性质,理解一次函数的图象性质,掌握平行四边形对角线互相平分,利用数形结合思想解题是关键.16.【分析】根据折叠性质和余角定理可知是等腰直角三角形,是直角三角形,运用勾股定理求出DF的值,最后用勾股定理得出的值.【详解】解:根据折叠的性质可知,,,,,∴;∵,(三角形外角定理),解析:【分析】根据折叠性质和余角定理可知是等腰直角三角形,是直角三角形,运用勾股定理求出DF的值,最后用勾股定理得出的值.【详解】解:根据折叠的性质可知,,,,,∴;∵,(三角形外角定理),(、都是的余角,同角的余角相等),∴,∵在中,,∴,∴是等腰直角三角形,,∵和互为补角,∴,∴,为直角三角形,∵,∴,∵根据勾股定理求得,∴,∴,∴,∴.故答案为:.【点睛】本题考查折叠性质与勾股定理的应用,掌握折叠性质及勾股定理,运用等面积法求出CE的值是解题关键.三、解答题17.(1);(2)7;(3)4;(4)【分析】(1)先化简成最简二次根式,再合并同类二次根式即可;(2)先化简成最简二次根式,再根据二次根式除法计算即可;(3)先化简成最简二次根式,再根据二次根解析:(1);(2)7;(3)4;(4)【分析】(1)先化简成最简二次根式,再合并同类二次根式即可;(2)先化简成最简二次根式,再根据二次根式除法计算即可;(3)先化简成最简二次根式,再根据二次根式运算法则计算即可;(4)先根据绝对值、0指数幂、负整数指数幂化简,再计算即可;【详解】解:(1)原式=;(2)原式=;(3)原式=3×-=9-5=4;(4)原式=.【点睛】本题考查二次根式的运算、0指数幂、负整数指数幂,解题的关键是先化简再进行计算.18.(1)20海里;(2)小时【分析】(1)作BH⊥AC于H.首先证明AB=BC,AH=HC,求出HC即可解决问题;(2)作CG⊥AB交AB的延长线于G,可得△BCF是等边三角形,进而即可求解.解析:(1)20海里;(2)小时【分析】(1)作BH⊥AC于H.首先证明AB=BC,AH=HC,求出HC即可解决问题;(2)作CG⊥AB交AB的延长线于G,可得△BCF是等边三角形,进而即可求解.【详解】解:(1)作BH⊥AC于H.∵∠CBG=∠CAB+∠BCA,∠CAB=30°,∠CBG=60°,∴∠ACB=∠BAC=30°∴BA=BC=30×=20(海里).∵BH⊥AC,∴AH=HC=10海里,∴AC=2AH=20海里;(2)作CG⊥AB交AB的延长线于G,设渔船到达B处后,航向不变,继续航行到F与小岛C的距离恰好为20海里.即CF=20海里,∴BC=CF,∵∠CBF=60°,∴△BCF是等边三角形,∴BF=20,∴20÷30=(小时),∴继续航行小时与小岛C的距离恰好为20海里.【点睛】本题考查了解直角三角形的应用−−方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.19.(1)见解析;(2)见解析;(3)见解析.【解析】【分析】(1)根据勾股定理AB=,以AB为底等腰直角三角形,两直角边为x,根据勾股定理求出,找横1竖2个格,或横2竖1个格画线即可;(2)解析:(1)见解析;(2)见解析;(3)见解析.【解析】【分析】(1)根据勾股定理AB=,以AB为底等腰直角三角形,两直角边为x,根据勾股定理求出,找横1竖2个格,或横2竖1个格画线即可;(2)以AB=为腰的等腰△ABD,AB=AD,以点A为起点找横1竖3个格,或横3竖1个格画线;如图△ABD;AB=BD,以点B为起点找横1竖3个格,或横3竖1个格画线;如图△ABD.(3)以AB=为腰的等腰△ABD,AB=BE,以点B为起点找横1竖3个格,或横3竖1个格;如图△ABE.AB=AE,以点A为起点找横1竖3个格,或横3竖1个格;所画的△ABE与图②中所画的△ABD不同即可.【详解】解:(1)∵根据勾股定理AB=,以AB为底等腰直角三角形,两直角边为x,根据勾股定理,解得,横1竖2,或横2竖1个画线;如图△ABC;(2)以AB=为腰的等腰△ABD,AB=AD,以点A为起点找横1竖3个格,或横3竖1个格画线;如图△ABD;AB=BD,以点B为起点找横1竖3个格画线,或横3竖1个格;如图△ABD;(3)以AB=为腰的等腰△ABD,AB=BE,以点B为起点找横1竖3个格,或横3竖1个格;如图△ABE.AB=AE,以点A为起点找横1竖3个格,或横3竖1个格;所画的△ABE与图②中所画的△ABD不全等.【点睛】本题考查网格作图,掌握网格作图方法与勾股定理,利用勾股定理确定腰长构造直角三角形是解题关键.20.见解析【分析】根据矩形的性质,可证得,从而得到四边形为平行四边形,再由勾股定理,可得到,即可求证.【详解】证明:∵矩形,∴,,∴,在和中,,∴,∴,又∵,∴四边形为平行四边形解析:见解析【分析】根据矩形的性质,可证得,从而得到四边形为平行四边形,再由勾股定理,可得到,即可求证.【详解】证明:∵矩形,∴,,∴,在和中,,∴,∴,又∵,∴四边形为平行四边形,∵矩形,∴,,又∵,,,∴,,∴,∴四边形为菱形.【点睛】本题主要考查了矩形的性质,菱形的判定,勾股定理,熟练掌握矩形的性质定理,菱形的判定定理是解题的关键.21.(1)S=12;(2)S=【解析】【分析】(1)利用三角形的三边均为整数,可选择海伦公式进行计算;(2)利用三角形的三边中有无理数,可选择秦九韶公式进行计算.【详解】解:(1),由海伦解析:(1)S=12;(2)S=【解析】【分析】(1)利用三角形的三边均为整数,可选择海伦公式进行计算;(2)利用三角形的三边中有无理数,可选择秦九韶公式进行计算.【详解】解:(1),由海伦公式得:,,;(2)由秦九韶公式得:,,,.【点睛】本题主要考查了数学常识,三角形的面积,二次根式的应用,根据三角形三边数字的特征选择恰当的公式是解题的关键.22.(1)气排球的售价是50元/个,篮球的售价是120元/个;(2)x=30时,总费用最小,见解析【分析】(1)直接利用购买2个排球和2个篮球共需340元,购买2个气排球所需费用比购买2个篮球所需费解析:(1)气排球的售价是50元/个,篮球的售价是120元/个;(2)x=30时,总费用最小,见解析【分析】(1)直接利用购买2个排球和2个篮球共需340元,购买2个气排球所需费用比购买2个篮球所需费用少140元,进而列出方程组得出答案;(2)利用气排球的数量不超过篮球数量的3倍,得出不等关系,再根据总共费用等于排球的费用和篮球费用的总和列出一次函数关系式,根据一次函数的增减性在自变量取值范围内求出总费用最小值.【详解】解:(1)设气排球的售价是a元/个,篮球的售价是b元/个,由题意得:解得:,答:气排球的售价是50元/个,篮球的售价是120元/个.(2)由题意知购买气排球(120﹣x)个,∴120﹣x≤3x解得:x≥30设购买气排球和篮球的总费用为w元,由题意可得:w=50(120﹣x)+120x=70x+6000∵w随x的增大而增大,且x为正整数,∴当x=30时,w取得最小值.∴当x=30时,总费用最小【点睛】本题主要考查二元一次方程组,不等式和一次函数解决最值问题,解决本题的关键是要认真审题寻找等量关系列方程组,不等式,一次函数关系进行求解.23.(1)2;(2)证明见解析过程;(3)AE+EF-AF=2OA.【分析】(1)通过测量可得;(2)过点C作CG⊥ON,垂足为点G,由AAS可证△ABO≌△BCG,可得BG=AO,BO=CG,由解析:(1)2;(2)证明见解析过程;(3)AE+EF-AF=2OA.【分析】(1)通过测量可得;(2)过点C作CG⊥ON,垂足为点G,由AAS可证△ABO≌△BCG,可得BG=AO,BO=CG,由SAS可证△ABE≌△CBE,可得AE=CE,由线段的和差关系可得结论;(3)过点C作CG⊥ON,垂足为点G,由AAS可证△ABO≌△BCG,可得BG=AO,BO=CG,由SAS可证△ABE≌△CBE,可得AE=CE,可得结论.【详解】解:(1)△AEF的周长是OA长的2倍,故答案为:2;(2)如图4,过点C作CG⊥ON,垂足为点G,则∠CGB=90°,∴∠GCB+∠CBG=90°,又∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∠DBC=∠DBA=45°,则∠CBG+∠ABO=90°,∴∠GCB=∠ABO,在△BCG与△ABO中,,∴△BCG≌△ABO(AAS),∴BG=AO,CG=BO,∵∠AOB=90°=∠CGB=∠CFO,∴四边形CGOF是矩形,∴CF=GO,CG=OF=OB,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE,∴△AEF的周长=AE+EF+AF=CE+EF+AF=CF+AF=GO+AF=BG+BO+AF=2AO;(3)如图5,过点C作CG⊥ON于点G,则∠CGB=90°,∴∠GCB+∠CBG=90°,又∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∠DBC=∠DBA=45°,则∠CBG+∠ABO=90°,∴∠GCB=∠ABO,在△BCG与△ABO中,∴△BCG≌△ABO(AAS),∴BG=AO,BO=CG,∵∠AOB=90°=∠CGB=∠CFO,∴四边形CGOF是矩形,∴CF=GO,CG=OF=OB,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE,∴AE+EF-AF=EF+CE-AF=NB+BO-(OF-AO)=OA+OB-(OB-OA)=2OA.【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,正方形的性质,矩形的判定和性质,添加恰当的辅助线构造全等三角形是本题的关键.24.(1)2;(2)见解析;(3)x≥0;(4)﹣1≤x≤1;(5)正方形;5【解析】【分析】(1)把x=﹣3代入y=|x|﹣1,即可求出m;(2)描点连线画出该函数的图象即可求解;(3)根据解析:(1)2;(2)见解析;(3)x≥0;(4)﹣1≤x≤1;(5)正方形;5【解析】【分析】(1)把x=﹣3代入y=|x|﹣1,即可求出m;(2)描点连线画出该函数的图象即可求解;(3)根据图象即可解答;(4)画出函数y1=﹣|x|+1的图象,根据图象即可得当y1≥y时,x的取值范围;(5)取b=3,在同一平面直角坐标系中画出y2=﹣|x|+3的图象,结合y1=﹣|x|+1的图象可得围成的四边形的形状是正方形,根据正方形的面积公式即可求解.【详解】解:(1)①把x=﹣3代入y=|x|﹣1,得m=3﹣1=2,故答案为:2;(2)该函数的图象如图,(3)根据函数图象,当y随x的增大而增大时,x的取值范围是x≥0,故答案为:x≥0;(4)画出函数y1=﹣|x|+1的图象如图,由图象得:当y1≥y时,x的取值范围为﹣1≤x≤1,故答案为:﹣1≤x≤1;(5)取b=3,在同一平面直角坐标系中画出y2=﹣|x|+3的图象,如图:由图象得:y1=﹣|x|+1的图象与函数y=|x|﹣1的图象围成的四边形的形状是正方形,y2=﹣|x|+3的图象与函数y=|x|﹣1的图象围成的四边形的形状是正方形,∴函数y2=﹣|x|+b(b>0)的图象与函数y=|x|﹣1的图象围成的四边形的形状是正方形,∵y=|x|﹣1,y2=﹣|x|+b(b>0),∴y与y2的图象围成的正方形的对角线长为b+1,∵该四边形的面积为18,∴(b+1)2=18,解得:b=5(负值舍去),故答案为:正方形,5.【点睛】本题是一次函数综合题,考查了一次函数的图象与性质,一次函数图象上点的坐标特征,利用了数形结合思想.正确画出函数的图象是解题的关键.25.(1)1;3;(2)当时,;当时,;(3)t=3秒或3.6秒时,△CBD是以BD或CD为底的等腰三角形;(4)或秒.【分析】(1)由勾股定理先求出的长度,则时,点D在线段AB上,即可求出答案;解析:(1)1;3;(2)当时,;当时,;(3)t=3秒或3.6秒时,△CBD是以BD或CD为底的等腰三角形;(4)或秒.【分析】(1)由勾股定理先求出的长度,则时,点D在线段AB上,即可求出答案;(2)由题意,可分为:,两种情况,分别表示出的长度即可;(3)分①CD=BC时,CD=3;②BD=BC时,过点B作BF⊥AC于F,根据等腰三角形三线合一的性质可得CD=2CF,即可得到答案.(4)分①∠CDB=90°时,利用△ABC的面积列式计算即可求出BD,然后利用勾股定理列式求解得到CD,再根据时间=路程÷速度计算;②∠CBD=90°时,点D在线段AB上运动,然后即可得解;【详解】解:(1)在Rt中,,,,∴,∵点D运动的速度为每秒1个单位长度,∴当,点D在线段CA上;当,点D在线段AB上;∴当时,点D在线段AB上,∴,;故答案为:1;3;(2)根据题意,当时,点D在线段CA上,且,∴;当时,点D在线段AB上,∴;(3)①CD=BC时,CD=3,t=3÷1=3;②BD=BC时,如图,过点B作BF⊥AC于F,设,则,∴,∴,∴CD=2CF=1.8×2=3.6,∴t=3.6÷1=3.6,综上所述,t=3秒或3.6秒时,△CBD是以BD或CD为底的等腰三角形.(4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论