版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省安大附中2025届高一数学第一学期期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则的值为()A. B.C.或 D.2.已知幂函数的图象过点,则的值为()A. B.1C.2 D.43.已知扇形的圆心角为,半径为10,则扇形的弧长为()A. B.1C.2 D.44.“两个三角形相似”是“两个三角形三边成比例”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.若命题“”是命题“”的充分不必要条件,则的取值范围是()A. B.C. D.6.若,则()A.2 B.1C.0 D.7.在空间直角坐标系中,一个三棱锥的顶点坐标分别是,,,.则该三棱锥的体积为()A. B.C. D.28.已知:,:,若是的必要不充分条件,则实数的取值范围是()A. B.C. D.9.某四棱锥的三视图如图所示,该四棱锥的表面积是A.32B.16+C.48D.10.关于的方程的实数根的个数为()A.6 B.4C.3 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则________.12.若扇形的面积为9,圆心角为2弧度,则该扇形的弧长为______13.在四边形ABCD中,若,且,则的面积为_______.14.已知函数是定义在的偶函数,且当时,若函数有8个零点,分别记为,,,,,,,,则的取值范围是______.15.已知函数,若,则实数的取值范围是__________.16.若,,,则的最小值为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知幂函数的图像经过点(),函数为奇函数.(1)求幂函数的解析式及实数a的值;(2)判断函数f(x)在区间(-1,1)上的单调性,并用的数单调性定义证明18.计算下列各式的值:(1);(2);(3).19.已知函数,且(1)求a的值;(2)判断在区间上的单调性,并用单调性的定义证明你的判断20.已知函数(Ⅰ)求在区间上的单调递增区间;(Ⅱ)若,,求的值21.设两个向量,,满足,.(1)若,求、的夹角;(2)若、夹角为,向量与的夹角为钝角,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】分别令和,根据集合中元素的互异性可确定结果.【详解】若,则,不符合集合元素的互异性;若,则或(舍),此时,符合题意;综上所述:.故选:A.2、C【解析】设出幂函数的解析式,利用给定点求出解析式即可计算作答.【详解】依题意,设,则有,解得,于得,所以.故选:C3、D【解析】由扇形的弧长公式运算可得解.【详解】解:因为扇形的圆心角为,半径为10,所以由弧长公式得:扇形的弧长为故选:D4、C【解析】根据相似三角形性质,结合充分条件、必要条件的判定方法,即可求解.【详解】根据相似三角形的性质得,由“两个三角形相似”可得到“两个三角形三边成比例”,即充分性成立;反之:由“两个三角形三边成比例”可得到“两个三角形相似”,即必要性成立,所以“两个三角形相似”是“两个三角形三边成比例”的充分必要条件.故选:C.5、C【解析】解不等式得,进而根据题意得集合是集合的真子集,再根据集合关系求解即可.【详解】解:解不等式得,因为命题“”是命题“”的充分不必要条件,所以集合是集合的真子集,所以故选:C6、C【解析】根据正弦、余弦函数的有界性及,可得,,再根据同角三角函数的基本关系求出,即可得解;【详解】解:∵,,又∵,∴,,又∵,∴,∴,故选:C7、A【解析】由题,在空间直角坐标系中找到对应的点,进而求解即可【详解】由题,如图所示,则,故选:A【点睛】本题考查三棱锥的体积,考查空间直角坐标系的应用8、C【解析】求解不等式化简集合,,再由题意可得,由此可得的取值范围【详解】解:由,即,解得或,所以或,,命题是命题的必要不充分条件,,则实数的取值范围是故选:C9、B【解析】由题意知原几何体是正四棱锥,其中正四棱锥的高为2,底面是一个边长为4的正方形,过顶点向底面做垂线,垂线段长是2,过底面的中心向长度是4的边做垂线,连接垂足与顶点,得到直角三角形,得到斜高是2,所以四个侧面积是,底面面积为,所以该四棱锥的表面积是16+,故选B点评:本题考查由三视图求几何体的表面积,做此题型的关键是正确还原几何体及几何体的棱的长度.10、D【解析】转化为求或的实根个数之和,再构造函数可求解.【详解】因为,所以,所以,所以或,令,则或,因为为增函数,且的值域为,所以和都有且只有一个实根,且两个实根不相等,所以原方程的实根的个数为.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据已知条件求得的值,由此求得的值.【详解】依题意,两边平方得,而,所以,所以.由解得,所以.故答案为:【点睛】知道其中一个,可通过同角三角函数的基本关系式求得另外两个,在求解过程中要注意角的范围.12、6【解析】先由已知求出半径,从而可求出弧长【详解】设扇形所在圆的半径为,因为扇形的面积为9,圆心角为2弧度,所以,得,所以该扇形的弧长为,故答案为:613、【解析】由向量的加减运算可得四边形为平行四边形,再由条件可得四边形为边长为4的菱形,由三角形的面积公式计算可得所求值【详解】在四边形中,,即为,即,可得四边形为平行四边形,又,可得四边形为边长为4的菱形,则的面积为正的面积,即为,故答案为:14、【解析】由偶函数的对称性,将转化为,再根据二次函数的对称性及对数函数的性质可进一步转化为,结合利用二次函数的性质即可求解.【详解】解:因为函数有8个零点,所以直线与函数图像交点有8个,如图所示:设,因为函数是定义在的偶函数,所以函数的图像关于轴对称,所以,且由二次函数对称性有,由有,所以又,所以,所以,故答案为:.15、【解析】先确定函数单调性,再根据单调性化简不等式,最后解一元二次不等式得结果.【详解】在上单调递增,在上单调递增,且在R上单调递增因此由得故答案为:【点睛】本题考查根据函数单调性解不等式,考查基本分析求解能力,属中档题.16、9【解析】“1”的代换法去求的最小值即可.【详解】(当且仅当时等号成立)则的最小值为9故答案为:9三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)在(-1,1)上单调递增,证明见解析【解析】(1)首先代点,求函数的解析式,利用奇函数的性质,求,再验证;(2)根据函数单调性的定义,设,作差,判断符号,即可判断函数的单调性.【小问1详解】由条件可知,所以,即,,因为是奇函数,所以,即,满足是奇函数,所以成立;【小问2详解】由(1)可知,在区间上任意取值,且,,因为,所以,,所以,即,所以函数在区间上单调递增.18、(1)(2)3(3)1【解析】(1)根据实数指数幂的运算法则化简即可;(2)根据对数的运算法则和性质化简求值;(3)利用诱导公式化简求值即可.试题解析:(1)原式=-10(+2)+1=+10-10-20+1=-.(2)原式=2lg5+2lg2+lg5(2lg2+lg5)+(lg2)2=2lg10+(lg5+lg2)2=2+(lg10)2=2+1=3.(3)原式=19、(1)4(2)在区间上单调递减,证明见解析【解析】(1)直接根据即可得出答案;(2)对任意,且,利用作差法比较的大小关系,即可得出结论.【小问1详解】解:由得,解得;【小问2详解】解:在区间内单调递减,证明:由(1)得,对任意,且,有,由,,得,,又由,得,于是,即,所以在区间上单调递减20、(Ⅰ),;(Ⅱ).【解析】(Ⅰ)利用三角恒等变换思想化简函数的解析式为,求得函数在上的单调递增区间,与取交集可得出结果;(Ⅱ)由可得出,利用同角三角函数的基本关系可求得的值,利用两角和的正弦公式可求得的值详解】(Ⅰ)令,,得,令,得;令,得.因此,函数在区间上的单调递增区间为,;(Ⅱ)由,得,,又,,因此,【点睛】本题考查正弦型函数的单调区间的求解,同时也考查了利用两角和的正弦公式求值,考查计算能力,属于中等题.21、(1);(2)且.【解析】(1)根据数量积运算以及结果,结合模长,即可求得,再根据数量积求得夹角;(2)根据夹角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版健康医疗服务合同
- 2024年度技术转让合同:新型节能环保技术专利转让与应用
- 二零二四年节能环保项目投资合同3篇
- 二零二四年租赁合同(含装修)3篇
- 住宅加装电梯施工合同
- 2024年度国际农业科技合作合同2篇
- 2024年度版权许可使用合同标的著作权范围与使用方式2篇
- 昆明市2024年度影视器材租赁合同(含拍摄责任)3篇
- 2024版智能家居安防系统定制合同3篇
- 二零二四年医疗服务合同及费用结算协议3篇
- 沉浸式展览-技术催生的新体验
- 琵琶演出策划方案
- 车辆动态监控员培训课件
- 毛概讨论全面建设小康社会
- 煤矿职工安全生产的权利和义务
- 2024年基金应知应会考试试题及答案
- 银行客户经理竞聘演讲课件
- EMS中国邮政速递物流
- 初中九年级音乐课件外婆的澎湖湾
- 医疗器械经营客户投诉处理培训
- 法律逻辑案例分析
评论
0/150
提交评论