2025届北京市海淀区中关村中学分校数学高二上期末预测试题含解析_第1页
2025届北京市海淀区中关村中学分校数学高二上期末预测试题含解析_第2页
2025届北京市海淀区中关村中学分校数学高二上期末预测试题含解析_第3页
2025届北京市海淀区中关村中学分校数学高二上期末预测试题含解析_第4页
2025届北京市海淀区中关村中学分校数学高二上期末预测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届北京市海淀区中关村中学分校数学高二上期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的图象是下列四个图象之一,且其导函数的图象如图所示,则该函数的图象是()A. B.C. D.2.方程表示椭圆的充分不必要条件可以是()A. B.C. D.3.算盘是中国传统计算工具,是中国人在长期使用算筹的基础上发明的,“珠算”一词最早见于东汉徐岳所撰的《数术记遗》,其中有云:“珠算控带四时,经纬三才.”北周甄鸾为此作注,大意是:把木板刻为3部分,上、下两部分是停游珠用的,中间一部分是作定位用的.下图是一把算盘的初始状态,自右向左,分别是个位、十位、百位…,上面一粒珠(简称上珠)代表5,下面一粒珠(简称下珠)是1,即五粒下珠的大小等于同组一粒上珠的大小.现在从个位和十位这两组中随机选择往下拨一粒上珠,往上拨3粒下珠,得到的数为质数(除了1和本身没有其它的约数)的概率是()A. B.C. D.4.下列命题中正确的个数为()①若向量,与空间任意向量都不能构成基底,则;②若向量,,是空间一组基底,则,,也是空间的一组基底;③为空间一组基底,若,则;④对于任意非零空间向量,,若,则A.1 B.2C.3 D.45.在x轴与y轴上截距分别为,2的直线的倾斜角为()A.45° B.135°C.90° D.180°6.已知是上的单调增函数,则的取值范围是A.﹣1b2 B.﹣1b2C.b﹣2或b2 D.b﹣1或b27.如图所示,直三棱柱中,,,分别是,的中点,,则与所成角的余弦值为()A. B.C. D.8.设,,则“”是“”的A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件9.在四面体中,空间的一点满足,若共面,则()A. B.C. D.10.瑞士数学家欧拉(LeonhardEuler)1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上.后人称这条直线为欧拉线.已知△ABC的顶点,其欧拉线方程为,则顶点C的坐标是()A.() B.()C.() D.()11.直线在y轴上的截距为()A. B.C. D.12.过两点、的直线的倾斜角为,则的值为()A.或 B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是双曲线的左、右焦点,点M是双曲线E上的任意一点(不是顶点),过作角平分线的垂线,垂足为N,O是坐标原点.若,则双曲线E的渐近线方程为__________14.已知是双曲线上的一点,是上的两个焦点,若,则的取值范围是_______________15.已知O为坐标原点,椭圆T:,过椭圆上一点P的两条直线PA,PB分别与椭圆交于A,B,设PA,PB的中点分别为D,E,直线PA,PB的斜率分别是,,若直线OD,OE的斜率之和为2,则的最大值为_______16.如图,抛物线上的点与轴上的点构成等边三角形,,,其中点在抛物线上,点的坐标为,,猜测数列的通项公式为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知三角形ABC的内角A,B,C的对边分别为a,b,c,且(1)求角B;(2)若,角B的角平分线交AC于点D,,求CD的长18.(12分)已知的展开式中,只有第6项的二项式系数最大(1)求n的值;(2)求展开式中含的项19.(12分)为弘扬中华优秀传统文化,鼓励全民阅读经典书籍,某市举行阅读月活动,现统计某街道约10000人在该活动月每人每日平均阅读时间(分钟)的频率分布直方图如图:(1)求x的值;(2)从该街道任选1人,则估计这个人的每日平均阅读时间超过60分钟的概率.20.(12分)已知函数(1)求f(x)在点处的切线方程;(2)求证:21.(12分)(1)已知集合,.:,:,并且是的充分条件,求实数的取值范围(2)已知:,,:,,若为假命题,求实数的取值范围22.(10分)已知函数,其中.(1)当时,求函数的单调性;(2)若对,不等式在上恒成立,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用导数与函数的单调性之间的关系及导数的几何意义即得.【详解】由函数f(x)的导函数y=f′(x)的图像自左至右是先减后增,可知函数y=f(x)图像的切线的斜率自左至右先减小后增大,且,在处的切线的斜率为0,故BCD错误,A正确.故选:A.2、D【解析】由“方程表示椭圆”可求得实数的取值范围,结合充分不必要条件的定义可得出结论.【详解】若方程表示椭圆,则,解得或.故方程表示椭圆的充分不必要条件可以是.故选:D.3、B【解析】根据古典概型概率计算公式,计算出所求的概率.【详解】依题有,算盘所表示的数可能有:17,26,8,35,62,71,80,53,其中是质数的有:17,71,53,故所求事件的概率为故选:B4、C【解析】根据题意、空间向量基底的概念和共线的运算即可判断命题①②③,根据空间向量的平行关系即可判断命题④.【详解】①:向量与空间任意向量都不能构成一个基底,则与共线或与其中有一个为零向量,所以,故①正确;②:由向量是空间一组基底,则空间中任意一个向量,存在唯一的实数组使得,所以也是空间一组基底,故②正确;③:由为空间一组基底,若,则,所以,故③正确;④:对于任意非零空间向量,,若,则存在一个实数使得,有,又中可以有为0的,分式没有意义,故④错误.故选:C5、A【解析】按照斜率公式计算斜率,即可求得倾斜角.【详解】由题意直线过,设直线斜率为,倾斜角为,则,故.故选:A.6、A【解析】利用三次函数的单调性,通过其导数进行研究,求出导数,利用其导数恒大于0即可解决问题【详解】∵∴∵函数是上的单调增函数∴在上恒成立∴,即.∴故选A.【点睛】可导函数在某一区间上是单调函数,实际上就是在该区间上(或)(在该区间的任意子区间都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围,本题是根据相应的二次方程的判别式来进行求解.7、A【解析】取的中点为,的中点为,然后可得或其补角即为与所成角,然后在中求出答案即可.【详解】取的中点为,的中点为,,,所以或其补角即为与所成角,设,则,,在,,故选:A8、C【解析】不能推出,反过来,若则成立,故为必要不充分条件.9、D【解析】根据四点共面的向量表示,可得结果.【详解】由共面知,故选:【点睛】本题主要考查空间中四点共面的向量表示,属基础题.10、A【解析】根据题意,求得的外心,再根据外心的性质,以及重心的坐标,联立方程组,即可求得结果.【详解】因为,故的斜率,又的中点坐标为,故的垂直平分线的方程为,即,故△的外心坐标即为与的交点,即,不妨设点,则,即;又△的重心的坐标为,其满足,即,也即,将其代入,可得,,解得或,对应或,即或,因为与点重合,故舍去.故点的坐标为.故选:A.11、D【解析】将代入直线方程求y值即可.【详解】令,则,得.所以直线在y轴上的截距为.故选:D12、D【解析】利用斜率公式可得出关于实数的等式与不等式,由此可解得实数的值.详解】由斜率公式可得,即,解得.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】延长交于点,利用角平分线结合中位线和双曲线定义求得的关系,然后利用,及渐近线方程即可求得结果.【详解】延长交于点,∵是的平分线,,,又是中点,所以,且,又,,,又,双曲线E的渐近线方程为故答案为:.14、【解析】由题意,,.故答案为.15、【解析】设的坐标,用点差法求和与的关系同,与的关系,然后表示出,求得最大值【详解】设,,,则,两式相减得,∴,,则,同理,,又,∴,,当且仅当,即时等号成立,∴,故答案为:【点睛】方法点睛:本题考查直线与椭圆相交问题,考查椭圆弦中点问题.椭圆中涉及到弦的中点时,常常用点差法确定关系,即设弦端点为,弦中点为,把两点坐标代入椭圆方程,相减后可得16、【解析】求出,,,,,,可猜测,利用累加法,即可求解【详解】的方程为,代入抛物线可得,同理可得,,,,可猜测,证明:记三角形的边长为,由题意可知,当时,在抛物线上,可得,当时,,两式相减得:化简得:,则数列是等差数列,,,,,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据正弦定理边角互化得,进而得;(2)根据题意得,进而在中,由余弦定理即可得答案.【小问1详解】解:因为,所以由正弦定理可得,所以,即,因为,所以,故,因为,所以【小问2详解】解:由(1)可知,又;所以,,,所以,在,由余弦定理可得,即,解得18、(1)10;(2);【解析】(1)利用二项式系数的性质即可求出的值;(2)求出展开式的通项公式,然后令的指数为即可求解【小问1详解】∵的展开式中,只有第6项的二项式系数最大,∴展开后一共有11项,则,解得;【小问2详解】二项式的展开式的通项公式为,令,解得,∴展开式中含的项为19、(1)(2)0.7【解析】(1)利用概率和为1计算可得的值;(2)求频率分布直方图中每人每日平均阅读时间超过60分钟的概率即为这个人阅读时间超过60分钟的概率.【小问1详解】由得【小问2详解】,估计这个人的每日平均阅读时间超过60分钟的概率为20、(1);(2)证明见解析【解析】(1)求导,进而得到,,写出切线方程;(2)将转化为,设,,利用导数法证明.【详解】(1)函数的定义域是,可得又,所以f(x)在点处的切线方程为整理得(或斜截式方程)(2)要证只需证因为,所以不等式等价于设,,;所以在单调递减,在单调递增故又,;所以在单调递增,在单调递减故因为且两个函数的最值点不相等所以有,原不等式得证21、(1);(2)【解析】(1)由二次函数的性质,求得,又由,求得集合,根据命题是命题的充分条件,所以,列出不等式,即可求解(2)依题意知,均为假命题,分别求得实数的取值范围,即可求解【详解】(1)由,∵,∴,,∴,所以集合,由,得,所以集合,因为命题是命题的充分条件,所以,则,解得或,∴实数的取值范围是.(2)依题意知,,均为假命题,当是假命题时,恒成立,则有,当是假命题时,则有,或.所以由均为假命题,得,即.【点睛】本题主要考查了复合命题的真假求参数,以及充要条件的应用,其中解答中正确得出集合间的关系,列出不等式,以及根据复合命题的真假关系求解是解答的关键,着重考查了推理与运算能力,属于基础题22、(1)的单调递增区

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论