2025届黑龙江省哈尔滨市宾县一中数学高二上期末学业质量监测模拟试题含解析_第1页
2025届黑龙江省哈尔滨市宾县一中数学高二上期末学业质量监测模拟试题含解析_第2页
2025届黑龙江省哈尔滨市宾县一中数学高二上期末学业质量监测模拟试题含解析_第3页
2025届黑龙江省哈尔滨市宾县一中数学高二上期末学业质量监测模拟试题含解析_第4页
2025届黑龙江省哈尔滨市宾县一中数学高二上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届黑龙江省哈尔滨市宾县一中数学高二上期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若两直线与互相垂直,则k的值为()A.1 B.-1C.-1或1 D.22.已知A,B,C三点不共线,O是平面ABC外一点,下列条件中能确定点M与点A,B,C一定共面的是A. B.C. D.3.已知函数f(x)的图象如图所示,则导函数f(x)的图象可能是()A. B.C. D.4.现有60瓶饮料,编号从1到60,若用系统抽样的方法从中抽取6瓶进行检验,则所抽取的编号可能为()A.3,13,23,33,43,53 B.2,14,26,38,40,52C.5,8,31,36,48,54 D.5,10,15,20,25,305.设,则当数列{an}的前n项和取得最小值时,n的值为()A.4 B.5C.4或5 D.5或66.如图所示的程序框图,阅读下面的程序框图,则输出的S=()A.14 B.20C.30 D.557.在公比为为q等比数列中,是数列的前n项和,若,则下列说法正确的是()A. B.数列是等比数列C. D.8.如图,正四棱柱ABCD—A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为A. B.C. D.9.已知某班有学生48人,为了解该班学生视力情况,现将所有学生随机编号,用系统抽样的方法抽取一个容量为4的样本已知3号,15号,39号学生在样本中,则样本中另外一个学生的编号是()A.26 B.27C.28 D.2910.从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点;从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点.如图①,一个光学装置由有公共焦点的椭圆与双曲线构成,现一光线从左焦点发出,依次经与反射,又回到了点,历时秒;若将装置中的去掉,如图②,此光线从点发出,经两次反射后又回到了点,历时秒;若,则的长轴长与的实轴长之比为()A. B.C. D.11.方程表示的曲线是()A.一个椭圆和一个点 B.一个双曲线的右支和一条直线C.一个椭圆一部分和一条直线 D.一个椭圆12.已知,,若,则实数的值为()A. B.C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.若正实数满足,则的最大值是________14.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为____________.15.已知数列满足(),设数列满足:,数列的前项和为,若()恒成立,则的取值范围是________16.已知点为双曲线,右支上一点,,为双曲线的左、右焦点,点为线段上一点,的角平分线与线段交于点,且满足,则________;若为线段的中点且,则双曲线的离心率为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的上一点处的切线方程为,椭圆C上的点与其右焦点F的最短距离为,离心率为(1)求椭圆C的标准方程;(2)若点P为直线上任一点,过P作椭圆的两条切线PA,PB,切点为A,B,求证:18.(12分)已知圆C的圆心为,一条直径的两个端点分别在x轴和y轴上(1)求圆C的方程;(2)直线l:与圆C相交于M,N两点,P(异于点M,N)为圆C上一点,求△PMN面积的最大值19.(12分)已知为等差数列,是各项均为正数的等比数列的前n项和,,,,在①;②;③.这三个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件解答,则按选择的第一个解答计分)(1)求数列和的通项公式;(2)求数列的前n项和.20.(12分)已知椭圆C:()的离心率为,并且经过点,(1)求椭圆C的方程;(2)设点关于坐标原点的对称点为,点为椭圆C上任意一点,直线的斜率分别为,,求证:为定值21.(12分)已知点A(-2,0),B(2,0),动点M满足直线AM与BM的斜率之积为,记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)若直线和曲线C相交于E,F两点,求.22.(10分)设是首项为的等差数列的前项和,是首项为1的等比数列的前项和,为数列的前项和,为数列的前项和,已知.(1)若,求;(2)若,求.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据互相垂直的两直线的性质进行求解即可.【详解】由,因此直线的斜率为,直线的斜率为,因为两直线与互相垂直,所以,故选:B2、D【解析】首先利用坐标法,排除错误选项,然后对符合的选项验证存在使得,由此得出正确选项.【详解】不妨设.对于A选项,,由于的竖坐标,故不在平面上,故A选项错误.对于B选项,,由于的竖坐标,故不在平面上,故B选项错误.对于C选项,,由于的竖坐标,故不在平面上,故C选项错误.对于D选项,,由于的竖坐标为,故在平面上,也即四点共面.下面证明结论一定成立:由,得,即,故存在,使得成立,也即四点共面.故选:D.【点睛】本小题主要考查空间四点共面的证明方法,考查空间向量的线性运算,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,属于中档题.3、D【解析】根据导函数正负与原函数单调性关系可作答【详解】原函数在上先减后增,再减再增,对应到导函数先负再正,再负再正,且原函数在处与轴相切,故可知,导函数图象为D故选:D4、A【解析】求得组距,由此确定正确选项.【详解】,即组距为,A选项符合,其它选项不符合.故选:A5、A【解析】结合等差数列的性质得到,解不等式组即可求出结果.【详解】由,即,解得,因为,故.故选:A.6、C【解析】经分析为直到型循环结构,按照循环结构进行执行,当满足跳出的条件时即可输出值【详解】解:第一次循环S=1,i=2;第二次循环S=1+22=5,i=3;第三次循环S=5+32=14,i=4;第四次循环S=14+42=30,i=5;此时5>4,跳出循环,故输出的值为30故选:C.7、D【解析】根据等比数列的通项公式、前项和公式的基本量运算,即可得到答案;【详解】,,故A错误;,,显然数列不是等比数列,故B错误;,故C错误;,,故D成立;故选:D8、D【解析】设AA1=2AB=2,因为,所以异面直线A1B与AD1所成角,,故选D.9、B【解析】由系统抽样可知抽取一个容量为4的样本时,将48人按顺序平均分为4组,由已知编号可得所求的学生来自第三组,设其编号为,则,进而求解即可【详解】由系统抽样可知,抽取一个容量为4的样本时,将48人分为4组,第一组编号为1号至12号;第二组编号为13号至24号;第三组编号为25号至36号;第四组编号为37号至48号,故所求的学生来自第三组,设其编号为,则,所以,故选:B【点睛】本题考查系统抽样的编号,属于基础题10、D【解析】在图①和图②中,利用椭圆和双曲线的定义,分别求得和的周长,再根据光速相同,且求解.【详解】在图①中,由椭圆的定义得:,由双曲线的定义得,两式相减得,所以的周长为,在图②中,的周长为,因为光速相同,且,所以,即,所以,即的长轴长与的实轴长之比为,故选:D11、C【解析】由可得,或,再由方程判断所表示的曲线.【详解】由可得,或,即或,则该方程表示一个椭圆的一部分和一条直线.故选:C12、D【解析】由,然后根据向量数量积的坐标运算即可求解.【详解】解:因,,所以,因为,所以,即,解得,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】由基本不等式及正实数、满足,可得的最大值.【详解】由基本不等式,可得正实数、满足,,可得,当且仅当时等号成立,故的最大值为,故答案为:4.14、160【解析】∵某个年级共有980人,要从中抽取280人,∴抽取比例为,∴此样本中男生人数为,故答案为160.考点:本题考查了分层抽样的应用点评:掌握分层抽样的概念是解决此类问题的关键,属基础题15、【解析】先由条件求出的通项公式,得到,由裂项相消法再求出,根据不等式恒成立求出参数的范围即可.【详解】当时,有当时,由①有②由①-②得:所以,当时也成立.所以,故则由,即,所以所以,由所以故答案为:【点睛】本题考查求数列的通项公式,考查裂项相消法求和以及数列不等式问题,属于中档题.16、①.②.【解析】过作,交于点,作,交于点,由向量共线定理可得;再由角平分线性质定理和双曲线的定义、结合余弦定理和离心率公式,可得所求值【详解】解:过作交于点,作交于点,由,得,由角平分线定理;因为为的中点,所以,由双曲线的定义,,所以,,,在中,由余弦定理,所以.故答案为:;.【点睛】本题考查双曲线的定义、方程和性质,以及角平分线的性质定理和余弦定理的运用,考查方程思想和运算能力,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)设为椭圆上的点,为椭圆的右焦点,求出然后求解最小值,推出,,,得到双曲线方程(2)设,,,,,即可得到,依题意可得以、为切点的切线方程,从而得到直线的方程,再分与两种情况讨论,即可得证;【小问1详解】解:设为椭圆上的点,为椭圆的右焦点,因为,所以,又,所以当且仅当时,,因为,所以,,因为,所以,故椭圆的标准方程为【小问2详解】解:由(1)知,设,,,,,所以,由题知,以为切点的椭圆切线方程为,以为切点的椭圆切线方程为,又点在直线、上,所以、,所以直线的方程为,当时,直线的斜率不存在,直线斜率为,所以,当时,,所以,所以,综上可得;18、(1);(2).【解析】(1)设直径两端点分别为,,由中点公式求参数a、b,进而求半径,即可得圆C的方程;(2)利用弦心距、半径、弦长的几何关系求,再由圆心到直线l的距离求P到直线l的距离的最大值,即可得△PMN面积的最大值【小问1详解】设直径两端点分别为,,则,,所以,,则圆C半径,所以C的方程为【小问2详解】圆心C到直线l的距离,则,点P到直线l的距离的最大值为,所以,△PMN面积的最大值为19、(1)无论选择哪个条件答案均为;(2).【解析】(1)先根据题设条件求解,然后根据选择的条件求解;(2)先求,然后利用分组求和的方法求解.【小问1详解】设的公差为,因为,;所以,解得,所以.选①:设的公比为,则;由题意得,因为,所以,解得或(舍);所以.选②:由,当时,,因为,所以;当时,,整理得;即是首项和公比均为2的等比数列,所以.选③:因为,,所以,解得;所以.【小问2详解】由(1)得;所以.20、(1)(2)证明见解析【解析】(1)根据题意可列出关于的三个方程,解出即可得到椭圆C的方程;(2)根据对称可得点坐标,再根据斜率公式可得,然后由点为椭圆C上的点得,代入化简即可求出为定值【小问1详解】由题意解得,.所以椭圆C的方程为.【小问2详解】因为点关于坐标原点的对称点为,所以的坐标为.,,所以,又因为点为椭圆C上的点,所以.21、(1),曲线是一个双曲线,除去左右顶点(2)【解析】(1)设,则的斜率分别为,,根据题意列出方程,化简后即得C的方程,根据方程可以判定曲线类型,注意特殊点的去除;(2)联立方程,利用韦达定理和弦长公式计算可得.【小问1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论