2025届浙江省杭州地区七校高二上数学期末监测模拟试题含解析_第1页
2025届浙江省杭州地区七校高二上数学期末监测模拟试题含解析_第2页
2025届浙江省杭州地区七校高二上数学期末监测模拟试题含解析_第3页
2025届浙江省杭州地区七校高二上数学期末监测模拟试题含解析_第4页
2025届浙江省杭州地区七校高二上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省杭州地区七校高二上数学期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆和圆恰有三条公共切线,则的最小值为()A.6 B.36C.10 D.2.已知,,且,则()A. B.C. D.3.已知等比数列的前n项和为,公比为q,若,则下列结论正确的是()A. B.C. D.4.椭圆的焦点为、,上顶点为,若,则()A B.C. D.5.函数,则不等式的解集是()A. B.C. D.6.设函数在R上存在导数,对任意的有,若,则k的取值范围是()A. B.C. D.7.已知数列的前项和满足,记数列的前项和为,.则使得的值为()A. B.C. D.8.双曲线的左、右焦点分别为、,过点且斜率为的直线与双曲线的左右两支分别交于P、Q两点,若,则双曲线C的离心率为()A. B.C. D.9.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,,一辆车从甲地到乙地,恰好遇到2个红灯的概率为()A. B.C. D.10.已知数列的前项和,且,则()A. B.C. D.11.如图,、分别为椭圆的左、右焦点,为椭圆上的点,是线段上靠近的三等分点,为正三角形,则椭圆的离心率为()A. B.C. D.12.椭圆的()A.焦点在x轴上,长轴长为2 B.焦点在y轴上,长轴长为2C.焦点在x轴上,长轴长为 D.焦点在y轴上,长轴长为二、填空题:本题共4小题,每小题5分,共20分。13.已知实数,满足,则的最大值为______.14.曲线围成的图形的面积为___________.15.写出直线一个方向向量______16.若命题“,不等式恒成立”为真命题,则实数a的取值范围是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平面直角坐标系中,点,,(1)求直线BC的方程;(2)记的外接圆为圆M,若直线OC被圆M截得的弦长为4,求点C的坐标18.(12分)已知椭圆的离心率为,点在椭圆上,直线与交于,两点(1)求椭圆的方程及焦点坐标;(2)若线段的垂直平分线经过点,求的取值范围19.(12分)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD,PD=AD=2,E,F分别为AD和PB的中点.请用空间向量知识解答下列问题:(1)求证:EF//平面PDC;(2)求平面EFC与平面PBD夹角的余弦值.20.(12分)请分别确定满足下列条件的直线方程(1)过点(1,0)且与直线x﹣2y﹣2=0垂直直线方程是(2)求与直线3x-4y+7=0平行,且在两坐标轴上截距之和为1的直线l的方程.21.(12分)在中,角A、B、C的对边分别为a、b、c,已知,且.(1)求的面积;(2)若a、b、c成等差数列,求b的值.22.(10分)证明:是无理数.(我们知道任意一个有理数都可以写成形如(m,n互质,)的形式)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由公切线条数得两圆外切,由此可得的关系,从而点在以原点为圆心,4为半径的圆上,记,由求得的最小值,平方后即得结论【详解】圆标准方程为,,半径为,圆标准方程为,,半径为,两圆有三条公切线,则两圆外切,所以,即,点在以原点为圆心,4为半径的圆上,记,,所以,所以的最小值为故选:B2、D【解析】利用空间向量共线的坐标表示可求得、的值,即可得解.【详解】因为,则,所以,,,因此,.故选:D3、D【解析】根据,可求得,然后逐一分析判断各个选项即可得解.【详解】解:因为,所以,因为,所以,所以,故A错误;又,所以,所以,所以,故BC错误;所以,故D正确.故选:D.4、C【解析】分析出为等边三角形,可得出,进而可得出关于的等式,即可解得的值.【详解】在椭圆中,,,,如下图所示:因为椭圆的上顶点为点,焦点为、,所以,,为等边三角形,则,即,因此,.故选:C.5、A【解析】利用导数判断函数单调递增,然后进行求解.【详解】对函数进行求导:,因为,,所以,因为,所以f(x)是奇函数,所以在R上单调递增,又因为,所以的解集为.故选:A6、C【解析】构造函数,求导后利用单调性,对题干条件变形后得到不等关系,求出答案.【详解】令,则恒成立,故单调递增,变形为,即,从而,解得:,故k的取值范围是故选:C7、B【解析】由,求得,得到,结合裂项法求和,即可求解.【详解】数列的前项和满足,当时,;当时,,当时,适合上式,所以,则,所以.故选:B.8、C【解析】由,且,可得,再结合,可得,进而在△中,由余弦定理可得到齐次方程,求出即可.【详解】由题意,可得,因为,所以,又,所以,在△中,,即,由余弦定理,可得,整理得,则,即,解得,因为,所以.故选:C.【点睛】方法点睛:本题考查求双曲线的离心率,属于中档题.双曲线离心率的求法:(1)由条件直接求出(或或),或者寻找(或或)所满足的关系,利用求解;(2)根据条件列出的齐次方程,利用转化为关于的方程,解方程即可,注意根据对所得解进行取舍.9、B【解析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解【详解】由各路口信号灯工作相互独立,可得某人从甲地到乙地恰好遇到2次红灯的概率:故选:B10、C【解析】由an=Sn-Sn-1,【详解】解:因为,所以,,两式相减可得,即,因为,,所以,即,时,也满足上式,所以,所以,故选:C.11、D【解析】根据椭圆定义及正三角形的性质可得到\,再在中运用余弦定理得到、的关系,进而求得椭圆的离心率【详解】由椭圆的定义知,,则,因为正三角形,所以,在中,由余弦定理得,则,,故选:D【点睛】本题考查椭圆的离心率的求解,考查考生的逻辑推理能力及运算求解能力,属于中等题.12、B【解析】把椭圆方程化为标准方程可判断焦点位置和求出长轴长.【详解】椭圆化为标准方程为,所以,且,所以椭圆焦点在轴上,,长轴长为.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得答案.【详解】由约束条件作出可行域如图所示,化目标函数为,由图可知,当直线过点时,直线在y轴上的截距最大,z最大,联立方程组,解得点,则取得最大值为.故答案为:【点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合的思想,需要注意的是:一,准确无误作出可行域;二,画目标函数所对应直线时,要注意让其斜率与约束条件中的直线的斜率比较;三,一般情况下,目标函数的最值会在可行域的端点或边界上取得.14、##【解析】曲线围成图形关于轴,轴对称,故只需要求出第一象限的面积即可.【详解】将或代入方程,方程不发生改变,故曲线关于轴,轴对称,因此只需求出第一象限的面积即可.当,时,曲线可化为:,表示的图形为一个半圆,围成的面积为,故曲线围成的图形的面积为.故答案:.15、【解析】本题可先将直线的一般式化为斜截式,然后根据斜率即可得到直线的一个方向向量.【详解】由题意可知,直线可以化为,所以直线的斜率为,直线的一个方向向量可以写为.故答案为:.16、【解析】,不等式恒成立,只要即可,利用基本不等式求出即可得出答案.【详解】解:因为,不等式恒成立,只要即可,因为,所以,则,当且仅当,即时取等号,所以,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)延长CB交x轴于点N,根据给定条件求出即可计算作答.(2)利用待定系数法求出圆M的方程,再由给定弦长确定C点位置,推理计算得解.【小问1详解】延长CB交x轴于点N,如图,因,则,又,则有,又,于是得,则直线BC的倾斜角为120°,直线BC的斜率,因此,,即所以直线BC的方程为.【小问2详解】依题意,设圆M的方程为,由(1)得:,解得,于是得圆M的方程为,即,圆心,半径,因直线OC被圆M所截的弦长为4,则直线OC过圆心,其方程为,由解得,即,所以点C的坐标是.18、(1),(2)【解析】(1)由题意,列出关于a,b,c的方程组求解即可得答案;(2)设M(x1,y1),N(x2,y2),线段MN的中点(x0,y0),则,作差可得①,又线段MN的垂直平分线过点A(0,1),则②,联立直线MN与椭圆的方程,可得﹣t2+1+4k2>0(*),③,由①②③及(*)式联立即可求解【小问1详解】解:由题意可得,解得,所以椭圆C的方程为,焦点坐标为【小问2详解】解:设M(x1,y1),N(x2,y2),线段MN的中点(x0,y0),因为,所以,即,所以①,因为线段MN的垂直平分线过点A(0,1),所以,即②,联立,得(1+4k2)x2+8ktx+4t2﹣4=0,所以=(8kt)2﹣4(1+4k2)(4t2﹣4)=﹣16t2+16+64k2>0,即﹣t2+1+4k2>0(*),③,把③代入②,得④,把③④代入①得,所以,即,代入(*)得,解得,又k≠0,所以k的取值范围为19、(1)证明见解析(2)【解析】(1)以为原点,以所在的直线分别为轴,建立空间直角坐标系,然后求出平面的法向量,再求出,判断是否与法垂直即可,(2)分别求出平面EFC与平面PBD的法向量,利用向量夹角公式求解即可【小问1详解】因PD⊥底面ABCD,平面,所以,因为四边形为正方形,所以,所以两两垂直,所以以为原点,以所在的直线分别为轴,建立空间直角坐标系,如图所示,则,因为E,F分别为AD和PB的中点,所以,所以,因为,所以平面,所以平面的一个法向量为,因为,所以,因为平面,所以EF//平面PDC;【小问2详解】设平面的法向量为,因为,,所以,令,则,设平面的法向量为,因为,所以,令,则,设平面EFC与平面PBD夹角为,,则,所以平面EFC与平面PBD夹角的余弦值为20、(1)2x+y﹣2=0(2)3x-4y-12=0【解析】(1)设与直线x﹣2y﹣2=0垂直的直线方程为2x+y+m=0,把(1,0)代入2x+y+m=0,解得m即得解(2)方法一:由题意知:可设l的方程为,求出l在x轴,y轴上的截距,由截距之和为1,解出m,代回求出直线方程;方法二:设直线方程为,由题意得,解出a,b即可.【小问1详解】设与直线x﹣2y﹣2=0垂直的直线方程为2x+y+m=0,把(1,0)代入2x+y+m=0,可得2+m=0,解得m=﹣2所求直线方程为:2x+y﹣2=0【小问2详解】方法一:由题意知:可设l的方程为,则l在x轴,y轴上的截距分别为.由知,.所以直线l的方程为:.方法二:显然直线在两坐标轴上截距不为0,则设直线方程为,由题意得解得所以直线l的方程为:.即.21、(1);(2).【解析】(1)先利用数量积和余弦值得到,再利用面积

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论