版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青海省海北市2025届高一上数学期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数是定义域为R的偶函数,且在上单调递减,则不等式的解集为A. B.C. D.2.已知圆与直线交于,两点,过,分别作轴的垂线,且与轴分别交于,两点,若,则A.或1 B.7或C.或 D.7或13.函数f(x)=2ax+1–1(a>0,且a≠1)恒过定点A.(–1,–1) B.(–1,1)C.(0,2a–1) D.(0,1)4.已知函数为偶函数,则A.2 B.C. D.5.若,则它是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角6.若,,则角的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限7.如果直线和同时平行于直线x-2y+3=0,则a,b的值为A.a= B.a=C.a= D.a=8.已知角的顶点在原点,始边与轴的正半轴重合,终边经过点,则()A. B.C. D.9.函数的最大值是()A. B.1C. D.210.已知函数,若方程有四个不同的解,,,,且,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知在平面直角坐标系中,角顶点在原点,始边与轴的正半轴重合,终边经过点,则___________.12.写出一个同时具有下列三个性质的函数:___________.①为幂函数;②为偶函数;③在上单调递减.13.设函数.则函数的值域为___________;若方程在区间上的四个根分别为,,,,则___________.14.《九章算术》是我国古代内容极为丰富的数学名著,其中有这样一个问题:“今有宛田,下周三十步,径十六步.问为田几何?”其意思为:“有一块扇形的田,弧长为30步,其所在圆的直径为16步,问这块田的面积是多少平方步?”该问题的答案为___________平方步.15.计算____________16.已知圆锥的侧面展开图是一个半径为2的半圆,则这个圆锥的高是_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知全集U={1,2,3,4,5,6,7,8},A={x|x2-3x+2=0},B={x|1≤x≤5,x∈Z},C={x|2<x<9,x∈Z}.求(1)A∪(B∩C);(2)(∁UB)∪(∁UC)18.如图,ABCD是一块边长为100米的正方形地皮,其中ATS是一座半径为90米的扇形小山,P是弧TS上一点,其余部分都是平地.现有一开发商想在平地上建造一个两边分别落在BC与CD上的长方形停车场PQCR,求长方形停车场PQCR面积的最大值.19.已知函数,(1)求证:为奇函数;(2)若恒成立,求实数的取值范围;(3)解关于的不等式20.如图,在三棱柱中,平面,,在线段上,,.(1)求证:;(2)试探究:在上是否存在点,满足平面,若存在,请指出点的位置,并给出证明;若不存在,说明理由.21.已知函数(且)为奇函数.(1)求n的值;(2)若,判断函数在区间上的单调性并用定义证明;(3)在(2)的条件下证明:当时,.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】本题首先可以根据函数是定义域为R的偶函数判断出函数的对称轴,然后通过在上单调递减判断出函数在上的单调性,最后根据即可列出不等式并解出答案【详解】因为函数是定义域为R的偶函数,所以函数关于轴对称,即函数关于对称,因为函数在上单调递减,所以函数在上单调递增,因为,所以到对称轴的距离小于到对称轴的距离,即,,化简可得,,解得,故选D【点睛】本题考查了函数的单调性和奇偶性的相关性质,若函数是偶函数,则函数关于轴对称且轴左右两侧单调性相反,考查推理能力与计算能力,考查函数方程思想与化归思想,是中档题2、A【解析】由题可得出,利用圆心到直线的距离可得,进而求得答案【详解】因为直线的倾斜角为,,所以,利用圆心到直线的距离可得,解得或.【点睛】本题考查直线与圆的位置关系,属于一般题3、B【解析】令x+1=0,求得x和y的值,从而求得函数f(x)=2ax+1–1(a>0,且a≠1)恒过定点的坐标【详解】令x+1=0,求得x=-1,且y=1,故函数f(x)=2ax+1–1(a>0且a≠1)恒过定点(-1,1),故选B.【点睛】】本题主要考查指数函数的单调性和特殊点,属于基础题4、A【解析】由偶函数的定义,求得的解析式,再由对数的恒等式,可得所求,得到答案【详解】由题意,函数为偶函数,可得时,,,则,,可得,故选A【点睛】本题主要考查了分段函数的运用,函数的奇偶性的运用,其中解答中熟练应用对数的运算性质,正确求解集合A,再根据集合的运算是解答的关键,着重考查了推理与运算能力,属于基础题.5、C【解析】根据象限角的定义判断【详解】因为,所以是第三象限角故选:C6、B【解析】应用诱导公式可得,,进而判断角的终边所在象限.【详解】由题设,,,所以角的终边在第二象限.故选:B7、A【解析】由两直线平行时满足的条件,列出关于方程,求出方程的解即可得到的值.【详解】直线和同时平行于直线,,解得,故选A.【点睛】本题主要考查两条直线平行的充要条件,意在考查对基础知识的理解与应用,属于基础题.8、D【解析】先利用三角函数的恒等变换确定点P的坐标,再根据三角函数的定义求得答案.【详解】,,即,则,故选:D.9、C【解析】利用正余弦的差角公式展开化简即可求最值.【详解】,∵,∴函数的最大值是.故选:C.10、D【解析】根据图象可得:,,,.,则.令,,,而函数.即可求解.【详解】解:函数,的图象如下:根据图象可得:若方程有四个不同的解,,,,且,则,,,.,,则.令,,,而函数在,单调递增.所以,则.故选:D.【点睛】本题考查函数的图象与性质,考查函数与方程思想、转化与化归思想、数形结合思想,考查运算求解能力,求解时注意借助图象分析问题,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据角的终边经过点,利用三角函数的定义求得,然后利用二倍角公式求解.【详解】因为角的终边经过点,所以,所以,所以,故答案为:12、(或,,答案不唯一)【解析】结合幂函数的图象与性质可得【详解】由幂函数,当函数图象在一二象限时就满足题意,因此,或,等等故答案为:(或,,答案不唯一)13、①.②.【解析】根据二倍角公式,化简可得,分别讨论位于第一、二、三、四象限,结合辅助角公式,可得的解析式,根据的范围,即可得值域;作出图象与,结合图象的对称性,可得答案.【详解】由题意得当时,即时,,又,所以;当时,即时,,又,所以;当时,即时,,又,所以;当时,即时,,又,所以;综上:函数的值域为.因为,所以,所以,作出图象与图象,如下如所示由图象可得,所以故答案为:;14、120【解析】利用扇形的面积公式求解.【详解】由题意得:扇形弧长为30,半径为8,所以扇形的面积为:,故答案为:12015、5【解析】由分数指数幂的运算及对数的运算即可得解.【详解】解:原式,故答案为:5.【点睛】本题考查了分数指数幂的运算及对数的运算,属基础题.16、【解析】设圆锥的母线为,底面半径为则因此圆锥的高是考点:圆锥的侧面展开图三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)A∪(B∩C)={1,2,3,4,5}.(2)(∁UB)∪(∁UC)={1,2,6,7,8}【解析】(1)先求集合A,B,C;再求B∩C,最后求A∪(B∩C)(2)先求∁UB,∁UC;再求(∁UB)∪(∁UC)试题解析:解:(1)依题意有:A={1,2},B={1,2,3,4,5},C={3,4,5,6,7,8},∴B∩C={3,4,5},故有A∪(B∩C)={1,2}∪{3,4,5}={1,2,3,4,5}(2)由∁UB={6,7,8},∁UC={1,2};故有(∁UB)∪(∁UC)={6,7,8}∪{1,2}={1,2,6,7,8}18、14050−9000(m2)【解析】设,然后表示出,进而表示出矩形PQCR的面积,再根据三角函数的相关知识化简求值,解决问题.详解】解:如图,连接AP,设,延长RP交AB于M,则,,∴,.∴矩形PQCR的面积为设,则,∴,∴当时,.,故长方形停车场PQCR面积的最大值是.19、(1)证明见解析(2)(3)【解析】(1)求得的定义域,计算,与比较可得;(2)原不等式等价为对恒成立,运用基本不等式可得最小值,进而得到所求范围;(3)原不等式等价为,设,判断其单调性可得的不等式,即可求出.【小问1详解】函数,由解得或,可得定义域,关于原点对称,因为,所以是奇函数;【小问2详解】由或,解得,所以恒成立,即,则,即对恒成立,因为,当且仅当,即时等号成立,所以,即的取值范围为;【小问3详解】不等式即为,设,即,可得在上递减,所以,则,解得,所以不等式的解集为.20、(1)证明见解析;(2)答案见解析.【解析】(1)因为面,所以,结合就有面,从而.(2)取,在平面内过作交于,连结.可以证明四边形为平行四边形,从而,也就是平面.我们还可以在平面内过作,交于,连结.通过证明平面平面得到平面.【详解】解析:(1)∵面,面,∴.又∵,,面,,∴面,又面,∴.(2)(法一)当时,平面.理由如下:在平面内过作交于,连结.∵,∴,又,且,∴且,∴四边形为平行四边形,∴,又面,面,∴平面.(法二)当时,平面.理由如下:在平面内过作,交于,连结.∵,面,面,∴平面,∵,∴,∴,又面,面,∴平面.又面,面,,∴平面平面.∵面,∴平面.点睛:证明线面平行,我们既可以在已知平面中找出与已知直线平行的直线,通过线面平行的判定定理去考虑,也可以利用构造过已知直线的平面,证明该平面与已知平面平行.21、(1);(2)在上单调递增,证明见解析;(3)证明见解析.【解析】(1)由奇函数的定义可得,然后可得,进而计算得出n的值;(2)由可得,则,然后利用定义证明函数单调性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《硫酸工艺学》课件
- 二尿素装置安全课课件
- 《烧伤基础知识》课件
- 《湖南乡土地理》课件
- 《孕妇学校讲课》课件
- 单位管理制度集合大合集职工管理
- 单位管理制度集粹汇编人员管理篇十篇
- 单位管理制度分享汇编【人力资源管理篇】十篇
- 单位管理制度分享大全职员管理篇十篇
- 2024教师安全责任协议书(28篇)
- 2025年国家图书馆招聘笔试参考题库含答案解析
- 机器人课程课程设计
- 南充市市级事业单位2024年公招人员拟聘人员历年管理单位遴选500模拟题附带答案详解
- 9.2溶解度(第2课时)-2024-2025学年九年级化学人教版(2024)下册
- 安全知识考试题库500题(含答案)
- 中国重症患者肠外营养治疗临床实践专家共识(2024)解读
- 最新中考英语单词表2200个
- 我的专业成长故事
- 公司管理制度-公司管理制度
- 井用潜水泵的安装
- 疫情索赔公式及相应表格模板Excel
评论
0/150
提交评论