北京市第四十三中学2025届高一上数学期末教学质量检测试题含解析_第1页
北京市第四十三中学2025届高一上数学期末教学质量检测试题含解析_第2页
北京市第四十三中学2025届高一上数学期末教学质量检测试题含解析_第3页
北京市第四十三中学2025届高一上数学期末教学质量检测试题含解析_第4页
北京市第四十三中学2025届高一上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市第四十三中学2025届高一上数学期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数图象向左平移个单位,所得函数图象的一个对称中心是()A. B.C. D.2.已知集合,集合,则()A.{-1,0,1} B.{1,2}C.{-1,0,1,2} D.{0,1,2}3.下列函数在定义域内为奇函数,且有最小值的是A. B.C. D.4.如图是一个体积为10的空间几何体的三视图,则图中的值为()A2 B.3C.4 D.55.若向量,则下列结论正确的是A. B..C. D.6.下列函数中,既是偶函数又在区间上单调递增的是()A. B.C. D.7.已知,则()A. B.C. D.8.已知角的终边与单位圆的交点为,则()A. B.C. D.9.如图,,下列等式中成立的是()A. B.C. D.10.主视图为矩形的几何体是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则_____.12.在平行四边形中,为上的中点,若与对角线相交于,且,则__________13.已知,若方程恰有个不同的实数解、、、,且,则______14.已知幂函数(为常数)的图像经过点,则__________15.已知函数在上的最大值为2,则_________16.已知函数定义域是________(结果用集合表示)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是小于9的正整数,,,求(1)(2)(3)18.已知.(Ⅰ)当时,若关于的方程有且只有两个不同的实根,求实数的取值范围;(Ⅱ)对任意时,不等式恒成立,求的值.19.已知的三个顶点.求:(1)边上高所在的直线方程;(2)边中线所在的直线方程.20.已知函数(,且)是指数函数.(1)求k,b的值;(2)求解不等式.21.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】先由函数平移得解析式,再令,结合选项即可得解.【详解】将函数图象向左平移个单位,可得.令,解得.当时,有对称中心.故选D.【点睛】本题主要考查了函数的图像平移及正弦型三角函数的对称中心的求解,考查了学生的运算能力,属于基础题.2、B【解析】由交集定义求得结果.【详解】由交集定义知故选:B3、D【解析】选项A中,函数为奇函数,但无最小值,故满足题意选项B中,函数为偶函数,不合题意选项C中,函数为奇函数,但无最小值,故不合题意选项D中,函数,为奇函数,且有最小值,符合题意选D4、A【解析】由已知可得:该几何体是一个四棱锥和四棱柱的组合体,其中棱柱的体积为:3×2×1=6,棱锥的体积为:×3×2×x=2x则组合体的体积V=6+2x=10,解得:x=2,故选A点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.5、C【解析】本题考查向量的坐标运算解答:选项A、选项B、选项C、,正确选项D、因为所以两向量不平行6、A【解析】根据基本初等函数的单调性与奇偶性的定义判断可得;【详解】解:对于A:定义域为,且,即为偶函数,且在上单调递增,故A正确;对于B:定义域为,且,即为偶函数,在上单调递减,故B错误;对于C:定义域为,定义域不关于原点对称,故为非奇非偶函数,故C错误;对于D:定义域为,但是,故为非奇非偶函数,故D错误;故选:A7、C【解析】因为,所以;因为,,所以,所以.选C8、A【解析】利用三角函数的定义得出和的值,由此可计算出的值.【详解】由三角函数的定义得,,因此,.故选:A.【点睛】本题考查三角函数的定义,考查计算能力,属于基础题.9、B【解析】本题首先可结合向量减法的三角形法则对已知条件中的进行化简,化简为然后化简并代入即可得出答案【详解】因为,所以,所以,即,故选B【点睛】本题考查的知识点是平面向量的基本定理,考查向量减法的三角形法则,考查数形结合思想与化归思想,是简单题10、A【解析】根据几何体的特征,由主视图的定义,逐项判断,即可得出结果.【详解】A选项,圆柱的主视图为矩形,故A正确;B选项,圆锥的主视图为等腰三角形,故B错;C选项,棱锥的主视图为三角形,故C错;D选项,球的主视图为圆,故D错.故选:A.【点睛】本题主要考查简单几何体的正视图,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】利用诱导公式求出,再将所求值的式子弦化切,代值计算即得.【详解】因,所以.故答案为:3.12、3【解析】由题意如图:根据平行线分线段成比例定理,可知,又因为,所以根据三角形相似判定方法可以知道∵为的中点∴相似比为∴∴故答案为313、【解析】作出函数的图象以及直线的图象,利用对数的运算可求得的值,利用正弦型函数的对称性可求得的值,即可得解.【详解】作出函数的图象以及直线的图象如下图所示:由图可知,由可得,即,所以,,可得,当时,,由,可得,由图可知,点、关于直线对称,则,因此,.故答案为:.14、3【解析】设,依题意有,故.15、1【解析】先求导可知原函数在上单调递增,求出参数后即可求出.【详解】解:在上在上单调递增,且当取得最大值,可知故答案为:116、【解析】根据对数函数的真数大于0求解即可.【详解】函数有意义,则,解得,所以函数的定义域为,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)根据交集概念求解即可.(2)根据并集概念求解即可.(3)根据补集和并集概念求解即可.【小问1详解】,,.【小问2详解】,,.【小问3详解】,,,.18、(Ⅰ);(Ⅱ)1.【解析】(Ⅰ)当时,,结合图象可得若方程有且只有两个不同的实根,只需即可.(Ⅱ)由题意得只需满足即可,根据函数图象的对称轴与区间的关系及抛物线的开口方向求得函数的最值,然后解不等式可得所求试题解析:(Ⅰ)当时,,∵关于的方程有且只有两个不同的实根,∴,∴.∴实数的取值范围为(Ⅱ)①当,即时,函数在区间上单调递增,∵不等式恒成立,∴,可得,∴解得,与矛盾,不合题意②当,即时,函数在区间上单调递减,∵不等式恒成立,∴,可得∴解得,这与矛盾,不合题意③当,即时,∵不等式恒成立,∴,整理得,即,即,∴,解得.当时,则,故.∴.综上可得点睛:(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系.当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图像的对称轴进行分析讨论求解19、(1);(2).【解析】(1)利用相互垂直的直线斜率之间的关系可得高所在的直线的斜率,进而得出点斜式(2)利用中点坐标公式可得边的中点,利用两点式即可得出【详解】解:(1)又因为垂直,直线的方程为,即;(2)边中点E,中线的方程为,即.【点睛】本题考查了相互垂直的直线斜率之间的关系、中点坐标公式、两点式、一般式,考查了推理能力与计算能力,属于基础题20、(1),(2)答案见解析【解析】(1)根据指数函数的定义列出方程,即可得解;(2)分和两种情况讨论,结合指数函数的单调性即可得解.【小问1详解】解:因为(,且)是指数函数,所以,,所以,;【小问2详解】解:由(1)得(,且),①当时,在R上单调递增,则由,可得,解得;②当时,在R上单调递减,则由,可得,解得,综上可知,当时,原不等式的解集为;当时,原不等式的解集为.21、乙商场中奖的可能性大.【解析】分别计算两种方案中奖的概率.先记出事件,得到试验发生包含的所有事件,和符合条件

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论