湖南省邵阳市育英高级中学2025届数学高二上期末监测试题含解析_第1页
湖南省邵阳市育英高级中学2025届数学高二上期末监测试题含解析_第2页
湖南省邵阳市育英高级中学2025届数学高二上期末监测试题含解析_第3页
湖南省邵阳市育英高级中学2025届数学高二上期末监测试题含解析_第4页
湖南省邵阳市育英高级中学2025届数学高二上期末监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省邵阳市育英高级中学2025届数学高二上期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的渐近线方程为,则该双曲线的离心率等于()A. B.C.2 D.42.2020年12月4日,嫦娥五号探测器在月球表面第一次动态展示国旗.1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,,,,分别是大星中心点与四颗小星中心点的联结线,,则第三颗小星的一条边AB所在直线的倾斜角约为()A. B.C. D.3.执行如图所示的程序框图,若输入,则输出的m的值是()A.-1 B.0C.0.1 D.14.已知椭圆的左、右焦点分别为、,点A是椭圆短轴的一个顶点,且,则椭圆的离心率()A. B.C. D.5.若函数,则单调增区间为()A. B.C. D.6.若,则复数在复平面内对应的点在()A.曲线上 B.曲线上C.直线上 D.直线上7.知点分别为圆上的动.点,为轴上一点,则的最小值()A. B.C. D.8.等比数列中,,,则()A. B.C. D.9.方程表示的曲线是A.两条直线 B.两条射线C.两条线段 D.一条直线和一条射线10.已知f(x)为R上的可导函数,其导函数为,且对于任意的x∈R,均有,则()A.e-2021f(-2021)>f(0),e2021f(2021)<f(0) B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0) D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)11.设是定义在R上的可导函数,若(为常数),则()A. B.C. D.12.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数在[1,3]单调递增,则a的取值范围___14.已知两平行直线与间的距离为3,则C的值是________.15.等差数列中,若,,则______,数列的前n项和为,则______16.已知点在直线上,则的最小值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面为菱形,,底面,,是的中点.(1)求证:平面;(2)求证:平面平面;(3)设点是平面上任意一点,直接写出线段长度最小值.(不需证明)18.(12分)已知,(1)若,p且q为真命题,求实数x的取值范围;(2)若p是q的充分条件,求实数m的取值范围19.(12分)已知数列是递增的等比数列,满足,(1)求数列的通项公式;(2)若,求数列的前n项和20.(12分)已知函数f(x)=ax3+bx2﹣3x在x=﹣1和x=3处取得极值.(1)求a,b的值(2)求f(x)在[﹣4,4]内的最值.21.(12分)已知函数,其中.(1)当时,求函数的单调性;(2)若对,不等式在上恒成立,求的取值范围.22.(10分)已知.(1)当,时,求中含项的系数;(2)用、表示,写出推理过程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由双曲线的渐近线方程,可得,再由的关系和离心率公式,计算即可得到所求值【详解】解:双曲线的渐近线方程为,由题意可得即,可得由可得,故选:A.2、C【解析】由五角星的内角为,可知,又平分第三颗小星的一个角,过作轴平行线,则,即可求出直线的倾斜角.【详解】都为五角星的中心点,平分第三颗小星的一个角,又五角星的内角为,可知,过作轴平行线,则,所以直线的倾斜角为,故选:C【点睛】关键点点睛:本题考查直线倾斜角,解题的关键是通过做辅助线找到直线的倾斜角,通过几何关系求出倾斜角,考查学生的数形结合思想,属于基础题.3、B【解析】计算后,根据判断框直接判断即可得解.【详解】输入,计算,判断为否,计算,输出.故选:B.4、D【解析】依题意,不妨设点A的坐标为,在中,由余弦定理得,再根据离心率公式计算即可.【详解】设椭圆的焦距为,则椭圆的左焦点的坐标为,右焦点的坐标为,依题意,不妨设点A的坐标为,在中,由余弦定理得:,,,,解得.故选:D.【点睛】本题考查椭圆几何性质,在中,利用余弦定理求得是关键,属于中档题.5、C【解析】求出导函数,令解不等式即可得答案.【详解】解:因为函数,所以,令,得,所以的单调增区间为,故选:C.6、B【解析】根据复数的除法运算,先化简,进而求出,再由复数的几何意义,即可得出结果.【详解】因为,所以,因此复数在复平面内对应的点为,可知其在曲线上.故选:B7、B【解析】求出圆关于轴的对称圆的圆心坐标,以及半径,然后求解圆与圆的圆心距减去两个圆的半径和,即可求出的最小值.【详解】圆关于轴的对称圆的圆心坐标,半径为1,圆的圆心坐标为,半径为1,∴若与关于x轴对称,则,即,当三点不共线时,当三点共线时,所以同理(当且仅当时取得等号)所以当三点共线时,当三点不共线时,所以∴的最小值为圆与圆的圆心距减去两个圆的半径和,∴.故选:B.8、D【解析】设公比为,依题意得到方程,即可求出,再根据等比数列通项公式计算可得;【详解】解:设公比为,因为,,所以,即,解得,所以;故选:D9、D【解析】由,得2x+3y−1=0或.即2x+3y−1=0(x⩾3)为一条射线,或x=4为一条直线.∴方程表示的曲线是一条直线和一条射线.故选D.点睛:在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线在求解方程时要注意变量范围.10、D【解析】通过构造函数法,结合导数确定正确答案.【详解】构造函数,所以在上递增,所以,即.故选:D11、C【解析】根据导数的定义即可求解.【详解】.故选:C.12、D【解析】根据抛物线的定义得出当点P在抛物线的顶点时,|PF|取最小值.【详解】根据题意,设抛物线y=2x2上点P到准线的距离为d,则有|PF|=d,抛物线的方程为y=2x2,即x2=y,其准线方程为y=-,∴当点P在抛物线的顶点时,d有最小值,即|PF|min=.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由在区间上恒成立来求得的取值范围.【详解】依题意在区间上恒成立,在上恒成立,所以.故答案为:14、【解析】根据两条平行直线之间的距离公式即可得解.【详解】两平行直线与间的距离为3,所以,所以故答案为:15、①.②.【解析】设等差数列公差为d,根据等差数列的性质即可求通项公式;,采用裂项相消的方法求.【详解】设等差数列公差为d,,,;∵,∴.故答案为:;.16、2【解析】由已知可用表示,代入所求式子后,结合二次函数的性质可求【详解】解:由题意得,即,所以,根据二次函数的性质可知,当时,上式取得最小值4,故的最小值2故答案为:2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析(3)【解析】(1)设,连结,根据中位线定理即可证,再根据线面平行的判定定理,即可证明结果;(2)由菱形的性质可知,可证,又底面,可得,再根据面面垂直的判定定理,即可证明结果;(3)根据等体积法,即,经过计算直接写出结果即可.【小问1详解】证明:设,连结.因为底面为菱形,所以为的中点,又因为E是PC的中点,所以.又因为平面,平面,所以平面.【小问2详解】证明:因为底面为菱形,所以.因为底面,所以.又因为,所以平面.又因为平面,所以平面平面.【小问3详解】解:线段长度的最小值为.18、(1);(2).【解析】(1)解一元二次不等式可得命题p,q所对集合,再求交集作答.(2)求出命题q所对集合,再利用集合的包含关系列式计算作答.【小问1详解】解不等式得:,则命题p所对集合,当时,解不等式得:,则命题q所对集合,由p且q为真命题,则,所以实数x的取值范围是.【小问2详解】解不等式得:,则命题q所对集合,因p是q的充分条件,则,于是得,解得,所以实数m的取值范围是.19、(1)(2)【解析】(1)由等比数列的通项公式计算基本量从而得出的通项公式;(2)由(1)可得,再由裂项相消法求和即可.【小问1详解】设等比数列的公比为q,所以有,,联立两式解得或又因为数列是递增的等比数列,所以,所以数列的通项公式为;【小问2详解】∵,∴,∴20、(1)a,b=﹣1(2)f(x)min=,f(x)max=【解析】(1)先对函数求导,由题意可得=3ax2+2bx﹣3=0的两个根为﹣1和3,结合方程的根与系数关系可求,(2)由(1)可求,然后结合导数可判断函数的单调性,进而可求函数的最值.【详解】解:(1)=3ax2+2bx﹣3,由题意可得=3ax2+2bx﹣3=0的两个根为﹣1和3,则,解可得a,b=-1,(2)由(1),易得f(x)在,单调递增,在上单调递减,又f(﹣4),f(﹣1),f(3)=﹣9,f(4),所以f(x)min=f(﹣4),f(x)max=f(﹣1).【点睛】本题考查利用极值求函数的参数,以及利用导数求函数的最值问题,属于中档题21、(1)的单调递增区间为,,单调递减区间为,(2)【解析】(1)求导可得,分析正负即得解;(2)转化在上恒成立为,分析函数单调性,转化为f(1)≤1f(-1)≤1,求解即可【小问1详解】当时,令,解得,,当变化时,,的变化情况如下表:↘极小值↗极大值↘极小值↗所以的单调递增区间为,,单调递减区间为,【小问2详解】由条件可知,从而恒成立当时,;当时,因此函数在上的最大值是与两者中的较大者为使对任意的,不等式在上恒成立,当且

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论