2025届四川省德阳市重点中学数学高一上期末综合测试试题含解析_第1页
2025届四川省德阳市重点中学数学高一上期末综合测试试题含解析_第2页
2025届四川省德阳市重点中学数学高一上期末综合测试试题含解析_第3页
2025届四川省德阳市重点中学数学高一上期末综合测试试题含解析_第4页
2025届四川省德阳市重点中学数学高一上期末综合测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届四川省德阳市重点中学数学高一上期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.关于,,下列叙述正确的是()A.若,则是的整数倍B.函数的图象关于点对称C.函数的图象关于直线对称D.函数在区间上为增函数.2.已知某几何体的三视图如图所示,则该几何体的体积为A. B.C. D.3.已知函数,,则函数的零点个数不可能是()A.2个 B.3个C.4个 D.5个4.一种药在病人血液中量低于时病人就有危险,现给某病人的静脉注射了这种药,如果药在血液中以每小时80%的比例衰减,那么应再向病人的血液中补充这种药不能超过的最长时间为()A.1.5小时 B.2小时C.2.5小时 D.3小时5.若某商店将进货单价为6元的商品按每件10元出售,则每天可销售100件.现准备采用提高售价、减少进货量的方法来增加利润.已知这种商品的售价每提高1元,销售量就要减少10件,那么要保证该商品每天的利润在450元以上,售价的取值范围是()A. B.C. D.6.已知在△ABC中,cos=-,那么sin+cosA=()A. B.-C. D.7.设函数,若关于的方程有四个不同的解,,,,且,则的取值范围是()A. B.C. D.8.已知全集,集合,,它们的关系如图(Venn图)所示,则阴影部分表示的集合为()A. B.C. D.9.若将函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),再将所得图象向左平移个单位长度,得到函数的图象,则下列说法正确的是()A.的最小正周期为 B.在区间上单调递减C.图象的一条对称轴为直线 D.图象的一个对称中心为10.点到直线的距离等于()A. B.C.2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.大圆周长为的球的表面积为____________12.已知函数f(x)=1g(2x-1)的定义城为______13.在空间直角坐标系中,设,,且中点为,是坐标原点,则__________14.已知函数,若正实数,满足,则的最小值是____________15.下列命题中正确的是________(1)是的必要不充分条件(2)若函数的最小正周期为(3)函数的最小值为(4)已知函数,在上单调递增,则16.已知为三角形的边的中点,点满足,则实数的值为_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆的方程为,是坐标原点.直线与圆交于两点(1)求的取值范围;(2)过点作圆的切线,求切线所在直线的方程.18.我们知道:人们对声音有不同感觉,这与它的强度有关系,声音的强度用(单位:)表示,但在实际测量时,常用声音的强度水平(单位:分贝)表示,它们满足公式:(,其中()),是人们能听到的最小强度,是听觉的开始.请回答以下问题:(Ⅰ)树叶沙沙声的强度为(),耳语的强度为(),无线电广播的强度为(),试分别求出它们的强度水平;(Ⅱ)某小区规定:小区内公共场所的声音的强度水平必须保持在分贝以下(不含分贝),试求声音强度的取值范围19.已知函数,.(1)若关于的不等式的解集为,当时,求的最小值;(2)若对任意的、,不等式恒成立,求实数的取值范围20.已知二次函数满足,且的最小值是求的解析式;若关于x的方程在区间上有唯一实数根,求实数m的取值范围;函数,对任意,都有恒成立,求实数t的取值范围21.设A是实数集的非空子集,称集合且为集合A的生成集(1)当时,写出集合A的生成集B;(2)若A是由5个正实数构成的集合,求其生成集B中元素个数的最小值;(3)判断是否存在4个正实数构成的集合A,使其生成集,并说明理由

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由题意利用余弦函数的图象和性质,逐一判断各个结论是否正确,从而得出结论.【详解】对于A,的周期为,若,则是的整数倍,故A错误;对于B,当时,,则函数的图象关于点中心对称,B正确;对于C,当时,,不是函数最值,函数的图象不关于直线对称,C错误;对于D,,,则不单调,D错误故选:B.2、D【解析】解:该几何体是一个底面半径为1、高为4的圆柱被一个平面分割成两部分中的一个部分,故其体积为.本题选择D选项.3、B【解析】由可得或,然后画出的图象,结合图象可分析出答案.【详解】由可得或的图象如下:所以当时,,此时无零点,有2个零点,所以的零点个数为2;当时,,此时有2个零点,有2个零点,所以的零点个数为4;当时,,此时有4个零点,有2个零点,所以的零点个数为6;当时,,此时有3个零点,有2个零点,所以的零点个数为5;当且时,此时有2个零点,有2个零点,所以的零点个数为4;当时,,此时的零点个数为2;当时,,此时有2个零点,有3个零点,所以的零点个数为5;当时,,此时有2个零点,有4个零点,所以的零点个数为6;当时,,此时有2个零点,有2个零点,所以零点个数为4;当时,,此时有2个零点,无零点,所以的零点个数为2;综上:的零点个数可以为2、4、5、6,故选:B4、D【解析】设时间为,依题意有,解指数不等式即可;【详解】解:设时间为,有,即,解得.故选:D5、B【解析】根据题意列出函数关系式,建立不等式求解即可.【详解】设售价为,利润为,则,由题意,即,解得,即售价应定为元到元之间,故选:B.6、B【解析】因为cos=-,即cos=-,所以sin=-,则sin+cosA=sinAcos+cosAsin+cosA=sin=-.故选B.7、A【解析】根据图象可得:,,,.,则.令,,求函数的值域,即可得出结果.【详解】画出函数的大致图象如下:根据图象可得:若方程有四个不同的解,,,,且,则,,,.,,,则.令,,而函数在单调递增,所以,则.故选:A.【点睛】本题考查函数的图象与性质,考查函数与方程思想、转化与化归思想、数形结合思想,考查运算求解能力,求解时注意借助图象分析问题,属于中档题.8、C【解析】根据所给关系图(Venn图),可知是求,由此可求得答案.【详解】根据题意可知,阴影部分表示的是,故,故选:C.9、D【解析】根据题意函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),再将所得图象向左平移个单位长度,得到函数,即可求出最小正周期,把看成是整体,分别求的单调递减区间、对称轴、对称中心,在分别验证选项即可得到答案.【详解】由于函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),故函数的解析式为,再将所得图象向左平移个单位长度,.,故A错误;的单调减区间为,故在区间内不单调递减;图象的对称轴为,不存在使得图象的一条对称轴为直线,故C错误;图象的对称中心的横坐标为,当时,图象的一个对称中心为,故D正确.故选:D.10、C【解析】由点到直线的距离公式求解即可.【详解】解:由点到直线的距离公式得,点到直线的距离等于.故选:C【点睛】本题考查了点到直线的距离公式,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】依题意可知,故求得表面积为.12、【解析】根据对数函数定义得2x﹣1>0,求出解集即可.【详解】∵f(x)=lg(2x﹣1),根据对数函数定义得2x﹣1>0,解得:x>0,故答案为(0,+∞).【点睛】考查具体函数的定义域的求解,考查了指数不等式的解法,属于基础题13、【解析】,故14、9【解析】根据指数的运算法则,可求得,根据基本不等式中“1”的代换,化简计算,即可得答案.【详解】由题意得,所以,所以,当且仅当,即时取等号,所以的最小值是9故答案为:915、(3)(4)【解析】对于(1)对角取特殊值即可验证;对于(2)采用数形结合即可得到答案;对于(3)把函数进行化简为关于的函数,再利用基本不等式即可得到答案;对于(4)用整体的思想,求出单调增区间为,再让即可得到答案.【详解】对于(1),当,当,不满足是的必要条件,故(1)错误;对于(2),函数的最小正周期为,故(2)错误;对于(3),,当且仅当等号成立,故(3)正确;对于(4)函数的单调增区间为,若在上单调递增,则,又,故(4)正确.故答案为:(3)(4).16、【解析】根据向量减法的几何意义及向量的数乘便可由得出,再由D为△ABC的边BC的中点及向量加法的平行四边形法则即可得出点D为AP的中点,从而便可得出,这样便可得出λ的值【详解】=,所以,D为△ABC的边BC中点,∴∴如图,D为AP的中点;∴,又,所以-2.故答案为-2.【点睛】本题考查向量减法的几何意义,向量的数乘运算,及向量数乘的几何意义,向量加法的平行四边形法则,共线向量基本定理,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】(1)直线与圆交于两点,即直线与圆相交,转化成圆心到直线距离小于半径,利用公式解不等式;(2)过某点求圆的切线,分斜率存在和斜率不存在两种情况数形结合分别讨论.【详解】(1)圆心到直线的距离,解得或即k的取值范围为.(2)当过点P的直线斜率不存在时,即x=2与圆相切,符合题意.当过点P的直线斜率存在时,设其方程为即,由圆心(0,4)到直线的距离等于2,可得解得,故直线方程为综上所述,圆的切线方程为或【点睛】此题考查直线和圆的位置关系,结合圆的几何性质处理相交相切,过某点的直线在设其方程的时候一定注意讨论斜率是否存在,这是一个易错点,对逻辑思维能力要求较高,当然也可以考虑直线与二次曲线的常规解法.18、(Ⅰ)0,20,40;(Ⅱ)大于或等于,同时应小于.【解析】(Ⅰ)将树叶沙沙声的强度,耳语的强度,无线电广播的强度,分别代入公式进行求解,即可求出所求;(Ⅱ)根据小区内公共场所的声音的强度水平必须保持在分贝以下建立不等式,然后解对数不等式即可求出所求.【详解】(Ⅰ)由得树叶沙沙声强度(分贝)耳语的强度为(分贝),无线电广播的强度为(分贝).(Ⅱ)由题意得:,即∴,∴∴声音强度的范围是大于或等于,同时应小于【点睛】与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.19、(1)(2)【解析】(1)根据二次不等式的解集得,再根据基本不等式求解即可;(2)根据题意将问题转化为在恒成立,再令,(),分类讨论即可求解.【详解】(1)由关于的不等式的解集为,所以知∴又∵,∴,取“”时∴即的最小值为,取“”时(2)∵时,,∴根据题意得:在恒成立记,()①当时,由,∴②当时,由,∴③当时,由,综上所述,的取值范围是【点睛】本题的第二问中关键是采用动轴定区间的方法进行求解,即讨论对称轴在定区间的左右两侧以及对称轴在定区间上的变化情况,从而确定该函数的最值.20、(1)(2)(3)【解析】(1)因,故对称轴为,故可设,再由得.(2)有唯一实数根可以转化为与有唯一的交点去考虑.(3),任意都有不等式成立等价于,分、、和四种情形讨论即可.解析:(1)因,对称轴为,设,由得,所以.(2)由方程得,即直线与函数的图象有且只有一个交点,作出函数在的图象.易得当或时函数图象与直线只有一个交点,所以的取值范围是.(3)由题意知.假设存在实数满足条件,对任意都有成立,即,故有,由.当时,在上为增函数,,所以;当时,,.即,解得,所以.当时,即解得.所以.当时,,即,所以,综上所述,,所以当时,使得对任意都有成立.点睛:(1)求二次函数的解析式,一般用待定系数法,有时也需要根据题设的特点合理假设二次函数的形式(如双根式、顶点式、一般式);(2)不等式对任意的恒成立可以等价转化为恒成立.21、(1)(2)7(3)不存在,理由见解析【解析】(1)利用集合的生成集定义直接求解.(2)设,且

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论