版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
马鞍山市第二中学2025届数学高一上期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在下列给出的函数中,以为周期且在区间内是减函数的是()A. B.C. D.2.如图,在中,已知为上一点,且满足,则实数的值为A. B.C. D.3.将函数的图象向左平移个单位后得到的图象关于轴对称,则正数的最小值是()A. B.C. D.4.设,若直线与直线平行,则的值为A. B.C.或 D.或5.已知是定义在上的偶函数,那么的最大值是()A.0 B.C. D.16.已知函数,若对一切,都成立,则实数a的取值范围为()A. B.C. D.7.已知向量,则ABC=A30 B.45C.60 D.1208.已知实数,且,则的最小值是()A.6 B.C. D.9.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为A. B.C. D.10.已知,则()A.- B.C.- D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则的值为___________.12.大圆周长为的球的表面积为____________13.设函数fx=ex-1,x≥a-xx2-5x+6,x<a,则当时,14.已知,则函数的最大值为__________.15.已知函数,若,则实数_________16.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设,.(1)求的值;(2)求与夹角的余弦值.18.已知全集,集合,集合.条件①;②是的充分条件;③,使得(1)若,求;(2)若集合A,B满足条件__________(三个条件任选一个作答),求实数m的取值范围19.已知x∈R,集合A中含有三个元素3,x,x2-2x.(1)求元素x满足的条件;(2)若-2∈A,求实数x.20.已知平面向量,,,且,.(1)求和:(2)若,,求向量与向量夹角的大小.21.计算:(1);(2)已知,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】的最小正周期为,故A错;的最小正周期为,当时,,所以在上为减函数,故B对;的最小正周期为,当时,,所以在上为增函数,故C错;的最小正周期为,,所以在不单调.综上,选B.2、B【解析】所以,所以。故选B。3、A【解析】图象关于轴对称,则其为偶函数,根据三角函数的奇偶性即可求解.【详解】将的图象向左平移个单位后得到,此时图象关于轴对称,则,则,当时,取得最小值故选:A.4、B【解析】由a(a+1)﹣2=0,解得a.经过验证即可得出【详解】由a(a+1)﹣2=0,解得a=﹣2或1经过验证:a=﹣2时两条直线重合,舍去∴a=1故选B【点睛】本题考查了两条直线平行的充要条件,考查了推理能力与计算能力,属于基础题5、C【解析】∵f(x)=ax2+bx是定义在[a-1,2a]上偶函数,∴a-1+2a=0,∴a=.又f(-x)=f(x),∴b=0,∴,所以.故选C.6、C【解析】将,成立,转化为,对一切成立,由求解即可.【详解】解:因为函数,若对一切,都成立,所以,对一切成立,令,所以,故选:C【点睛】方法点睛:恒(能)成立问题的解法:若在区间D上有最值,则(1)恒成立:;;(2)能成立:;.若能分离常数,即将问题转化为:(或),则(1)恒成立:;;(2)能成立:;.7、A【解析】由题意,得,所以,故选A【考点】向量的夹角公式【思维拓展】(1)平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值范围:;(2)由向量的数量积的性质知,,,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题8、B【解析】构造,利用均值不等式即得解【详解】,当且仅当,即,时等号成立故选:B【点睛】本题考查了均值不等式在最值问题中的应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题9、B【解析】得到的偶函数解析式为,显然【考点定位】本题考查三角函数的图象和性质,要注意三角函数两种变换的区别,选择合适的值通过诱导公式把转化为余弦函数是考查的最终目的.10、D【解析】根据诱导公式可得,结合二倍角的余弦公式即可直接得出结果.【详解】由题意得,,即,所以.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、1或【解析】由诱导公式、二倍角公式变形计算【详解】,所以或,时,;时,故答案为:1或12、【解析】依题意可知,故求得表面积为.13、①.②.【解析】当时得到,令,再利用定义法证明在上单调递减,从而得到,令,,根据指数函数的性质得到函数的单调性,即可求出的最小值,即可得到的最小值;分别求出与的零点,根据恰有两个零点,即可求出的取值范围;【详解】解:当时,令,,设且,则因为且,所以,,所以,所以,所以在上单调递减,所以,令,,函数在定义域上单调递增,所以,所以的最小值为;对于,令,即,解得,对于,令,即,解得或或,因为fx=ex-1,x≥a-xx2-5x+6,x<a恰有两个零点,则和一定为的零点,不为的零点,所以,即;故答案为:;;14、【解析】换元,,化简得到二次函数,根据二次函数性质得到最值.【详解】设,,则,,故当,即时,函数有最大值为.故答案为:.【点睛】本题考查了指数型函数的最值,意在考查学生的计算能力,换元是解题的关键.15、【解析】分和求解即可.【详解】当时,,所以(舍去);当时,,所以(符合题意).故答案为:.16、【解析】正四棱柱的高是4,体积是16,则底面边长为2,底面正方形的对角线长度为,所以正四棱柱体对角线的长度为,四棱柱体对角线为外接球的直径,所以球的半径为,所以球的表面积为考点:正四棱柱外接球表面积三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)-2;(2).【解析】(1),,所以;(2)因为,所以代值即可得与夹角的余弦值.试题解析:(1)(2)因为,,所以.18、(1)(2)或【解析】(1)可将带入集合中,得到集合的解集,即可求解出答案;(2)可根据题意中三个不同的条件,列出集合与集合之间的关系,即可完成求解.【小问1详解】当时,集合,集合,所以;【小问2详解】i.当选择条件①时,集合,当时,,舍;当集合时,即集合,时,,此时要满足,则,解得,结合,所以实数m的取值范围为或;ii.当选择条件②时,要满足是的充分条件,则需满足在集合时,集合是集合的子集,即,解得,所以实数m取值范围为或;iii.当选择条件③时,要使得,使得,那么需满足在集合时,集合是集合子集,即,解得,所以实数m的取值范围为或;故,实数m的取值范围为或.19、(1)x≠-1,且x≠0,且x≠3(2)x=-2.【解析】(1)由集合中元素的互异性可得x≠3,且x2-2x≠x,x2-2x≠3,解得x≠-1,且x≠0,且x≠3.故元素x满足的条件是x≠-1,且x≠0,且x≠3.(2)若-2∈A,则x=-2或x2-2x=-2.由于方程x2-2x+2=0无解,所以x=-2.点睛:已知一个元素属于集合,求集合中所含的参数值.具体解法:(1)确定性的运用:利用集合中元素的确定性解出参数的所有可能值.(2)互异性的运用:根据集合中元素的互异性对集合中元素进行检验20、(1),;(2).【解析】(1)本题首先可根据、得出,然后通过计算即可得出结果;(2)本题首先可根据题意得出以及,然后求出、以及的值,最后根据向量的数量积公式即可得出结果.【详解】(1)因为,,,且,,所以,解得,故,.(2)因为,,所以,因为,,所以,,,,设与的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 招投标及合同管理简答题大全
- 劳动合同书模板下载范本版
- Unit3Lesson13Beijingisgreat(课件)冀教版英语五年级上册
- 2024年度店铺经营权及合同权益转让合同3篇
- 二零二四年度设备购买与技术支持服务合同3篇
- 2024年度企业财务管理优化服务合同
- 人教版九年级化学第一单元2化学是一门以实验为基础的科学课时2对人体吸入的空气和呼出的气体的探究分层作业课件
- 人教版九年级化学第二单元1空气课时1空气的成分纯净物和混合物分层作业课件
- 人教版九年级化学第五单元化学方程式1质量守恒定律课时3化学方程式教学课件
- 装修木工合同分包协议书模板
- 协会第五届换届选举筹备工作汇报
- 陶粒混凝土配合比
- 接触网基础知识
- 《物流设施与设备》期末试卷A及答案(共5页)
- 渠道划分及成功图像执行培训课件
- WTO专题(原产地规则)
- 人教版四年级上英语单词默写表-
- 危重患者抢救护理
- 浅谈小学音乐课中实施合作教学的策略
- 宣传片验收单.doc
- IEC-68-2-1-试验方法
评论
0/150
提交评论