版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省绍兴市柯桥区2025届高一上数学期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数α是()A.1 B.4C.1或4 D.2或42.已知,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知在正四面体ABCD中,E是AD的中点,P是棱AC上的一动点,BP+PE的最小值为,则该四面体内切球的体积为()A.π B.πC.4π D.π4.若方程有两个不相等的实数根,则实根的取值范围是()A. B.C. D.5.函数的部分图象如图所示,则的值分别是()A. B.C. D.6.已知,,三点,点使直线,且,则点D的坐标是(
)A. B.C. D.7.下列函数中,在区间上为减函数的是()A. B.C. D.8.比较,,的大小()A. B.C. D.9.圆与圆的位置关系是()A.内含 B.内切C.相交 D.外切10.函数的部分图像如图所示,则的最小正周期为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设、为平面向量,若存在不全为零的实数λ,μ使得λμ0,则称、线性相关,下面的命题中,、、均为已知平面M上的向量①若2,则、线性相关;②若、为非零向量,且⊥,则、线性相关;③若、线性相关,、线性相关,则、线性相关;④向量、线性相关的充要条件是、共线上述命题中正确的是(写出所有正确命题的编号)12.已知函数,则函数零点的个数为_________13.函数的定义域是__________,值域是__________.14.________.15.已知函数在上单调递减,则实数的取值范围是______16.将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变,再将图象向右平移个单位后,所得图象关于原点对称,则的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在三棱锥中,平面,,,,分别是,的中点,,分别是,的中点.(1)求证:平面.(2)求证:平面平面.18.已知函数,为常数.(1)求函数的最小正周期及对称中心;(2)若时,的最小值为-2,求的值19.为贯彻党中央、国务院关于“十三五”节能减排的决策部署,2022年某企业计划引进新能源汽车生产设备.通过市场分析,全年需投人固定成本2500万元,生产百辆需另投人成本万元.由于起步阶段生产能力有限,不超过120,且经市场调研,该企业决定每辆车售价为8万元,且全年内生产的汽车当年能全部销售完.(1)求2022年的利润(万元)关于年产量(百辆)的函数关系式(利润销售额-成本);(2)2022年产量多少百辆时,企业所获利润最大?并求出最大利润.20.计算:(1)(2)21.已知直线及点.(1)证明直线过某定点,并求该定点的坐标;(2)当点到直线的距离最大时,求直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据扇形的弧长公式和面积公式,列出方程组,求得的值,即可求解.【详解】设扇形所在圆的半径为,由扇形的周长是6,面积是2,可得,解得或,又由弧长公式,可得,即,当时,可得;当时,可得,故选:C.2、A【解析】化简得,再利用充分非必要条件定义判断得解.【详解】解:.因为“”是“”的充分非必要条件,所以“”是“”的充分非必要条件.故选:A3、D【解析】首先设正四面体的棱长为,将侧面和沿边展开成平面图形,根据题意得到的最小值为,从而得到,根据等体积转化得到内切球半径,再计算其体积即可.【详解】设正四面体的棱长为,将侧面和沿边展开成平面图形,如图所示:则的最小值为,解得.如图所示:为正四面体的高,,正四面体高.所以正四面体的体积.设正四面体内切球的球心为,半径为,如图所示:则到正四面体四个面的距离相等,都等于,所以正四面体的体积,解得.所以内切球的体积.故选:D4、B【解析】方程有两个不相等的实数根,转化为有两个不等根,根据图像得到只需要故答案为B.5、A【解析】根据的图象求得,求得,再根据,求得,求得的值,即可求解.【详解】根据函数的图象,可得,可得,所以,又由,可得,即,解得,因为,所以.故选:A.6、D【解析】先设点D的坐标,由题中条件,且,建立D点横纵坐标的方程,解方程即可求出结果.【详解】设点,则由题意可得:,解得,所以D点坐标为.【点睛】本题主要考查平面向量,属于基础题型.7、D【解析】根据基本初等函数的单调性及复合函数单调性求解.【详解】当时,在上单调递减,所以在区间上为增函数;由指数函数单调性知在区间上单调递增;由在区间上为增函数,为增函数,可知在区间上为增函数;知在区间上为减函数.故选:D8、D【解析】由对数函数的单调性判断出,再根据幂函数在上单调递减判断出,即可确定大小关系.【详解】因为,,所以故选:D【点睛】本题考查利用对数函数及幂函数的单调性比较数的大小,属于基础题.9、D【解析】根据两圆的圆心距和两半径的和与差的关系判断.【详解】因为圆与圆的圆心距为:两圆的半径之和为:,所以两圆相外切,故选:D10、B【解析】由图可知,,计算即可.【详解】由图可知,,则,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、①④【解析】利用和线性相关等价于和是共线向量,故①正确,②不正确,④正确.通过举反例可得③不正确【详解】解:若、线性相关,假设λ≠0,则,故和是共线向量反之,若和是共线向量,则,即λμ0,故和线性相关故和线性相关等价于和是共线向量①若2,则20,故和线性相关,故①正确②若和为非零向量,⊥,则和不是共线向量,不能推出和线性相关,故②不正确③若和线性相关,则和线性相关,不能推出若和线性相关,例如当时,和可以是任意的两个向量.故③不正确④向量和线性相关的充要条件是和是共线向量,故④正确故答案为①④【点睛】本题考查两个向量线性相关的定义,两个向量共线的定义,明确和线性相关等价于和是共线向量,是解题的关键12、【解析】解方程,即可得解.【详解】当时,由,可得(舍)或;当时,由,可得.综上所述,函数零点的个数为.故答案为:.13、①.②.【解析】解不等式可得出原函数的定义域,利用二次函数的基本性质可得出原函数的值域.详解】对于函数,有,即,解得,且.因此,函数的定义域为,值域为.故答案为:;.14、【解析】.考点:诱导公式.15、【解析】根据指数函数与二次函数的单调性,以及复合函数的单调性的判定方法,求得在上单调递增,在区间上单调递减,再结合题意,即可求解.【详解】令,可得抛物线的开口向上,且对称轴为,所以函数在上单调递减,在区间上单调递增,又由函数,根据复合函数的单调性的判定方法,可得函数在上单调递增,在区间上单调递减,因为函数在上单调递减,则,可得实数的取值范围是.故答案:.16、【解析】将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变得到,再将图象向右平移个单位,得到,即,其图象关于原点对称.∴,,又∴故答案为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析.【解析】(1)根据线面平行的判定定理可证明平面;(2)根据面面垂直的判定定理即可证明平面平面.【详解】(1)证明:连结,在中,,分别是,的中点,为的中位线,.在,,分别是,的中点,是的中位线,,.平面,平面.(2)证明:,,,,,平面且面平面平面【点睛】本题主要考查直线与平面平行的判定和平面与平面垂直的判定,属于基础题型.18、(1)最小正周期.对称中心为:,.(2)【解析】(1)根据周期和对称轴公式直接求解;(2)先根据定义域求的范围,再求函数的最小值,求参数的值.【详解】(1)∵,∴的最小正周期令,,解得,,∴的对称中心为:,.(2)当时,,故当时,函数取得最小值,即,∴取得最小值为,∴【点睛】本题考查的基本性质,意在考查基本公式和基本性质,属于基础题型.19、(1)(2)2022年产量为100百辆时,企业所获利润最大,最大利润为1600万元【解析】(1)直接由题意分类写出2022年的利润(万元)关于年产量(百辆)的函数关系式;(2)分别利用配方法与基本不等式求出两段函数的最大值,求最大值中的最大者得结论【小问1详解】由题意得:当年产量为百辆时,全年销售额为万元,则,所以当时,当时,,所以【小问2详解】由(1)知:当时,,所以当时,取得最大值,最大值为1500万元;当时,,当且仅当,即时等号成立,因为,所以2022年产量为100百辆时,企业所获利润最大,最大利润为1600万元.20、(1)(2)【解析】(1)根据分数指数幂的运算法则计算可得;(2)根据对数的运算法则及对数恒等式计算可得;【小问1详解】解:【小问2详解】解:21、(1)证明见解析,定点坐标为;(2)15x+24y+2=0.【解析】(1)直线l的方程可化为a(2x+y+1)+b(-x+y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《个案工作的原理》课件
- 《游轮礼仪》课件
- 2024商业空间广告装饰施工协议版A版
- 2024年度供货合作模板协议文件版B版
- 2024年大班语言活动教案绘本《漏》
- 2024年工商行政管理局工作计划
- 2024小学二年级班主任工作计划第一学期例文
- 2024年大班科学教案800字
- 2024年土木结构工程人力分包标准协议书版B版
- 2024年专业降水工程标准协议范本版B版
- 外科学(1)智慧树知到答案章节测试2023年温州医科大学
- 停工窝工索赔案例
- 阿里数字商业知识图谱构建及开放
- 处方合格率统计表
- 设备销售人员提成方案
- 小神仙简谱(音乐资料)
- 辽宁盘锦浩业化工“1.15”泄漏爆炸着火事故警示教育
- 实用标准化仓储建设要求规范书
- 社区家庭教育:隔代教育和亲子教育
- 河北省邯郸市药品零售药店企业药房名单目录
- 年产10万吨热塑性酚醛树脂的工厂设计
评论
0/150
提交评论