2025届湖北省东风高级中学数学高三第一学期期末达标检测试题含解析_第1页
2025届湖北省东风高级中学数学高三第一学期期末达标检测试题含解析_第2页
2025届湖北省东风高级中学数学高三第一学期期末达标检测试题含解析_第3页
2025届湖北省东风高级中学数学高三第一学期期末达标检测试题含解析_第4页
2025届湖北省东风高级中学数学高三第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北省东风高级中学数学高三第一学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若有2个零点,则实数的取值范围为()A. B. C. D.2.如图,平面与平面相交于,,,点,点,则下列叙述错误的是()A.直线与异面B.过只有唯一平面与平行C.过点只能作唯一平面与垂直D.过一定能作一平面与垂直3.执行下面的程序框图,如果输入,,则计算机输出的数是()A. B. C. D.4.如图,在三棱柱中,底面为正三角形,侧棱垂直底面,.若分别是棱上的点,且,,则异面直线与所成角的余弦值为()A. B. C. D.5.已知函数,若时,恒成立,则实数的值为()A. B. C. D.6.如图,在平行四边形中,为对角线的交点,点为平行四边形外一点,且,,则()A. B.C. D.7.设,是双曲线的左,右焦点,是坐标原点,过点作的一条渐近线的垂线,垂足为.若,则的离心率为()A. B. C. D.8.若2m>2n>1,则()A. B.πm﹣n>1C.ln(m﹣n)>0 D.9.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线近似地刻画其相关关系,根据图形,以下结论最有可能成立的是()A.线性相关关系较强,b的值为1.25B.线性相关关系较强,b的值为0.83C.线性相关关系较强,b的值为-0.87D.线性相关关系太弱,无研究价值10.已知等差数列的公差为-2,前项和为,若,,为某三角形的三边长,且该三角形有一个内角为,则的最大值为()A.5 B.11 C.20 D.2511.已知函数,若恒成立,则满足条件的的个数为()A.0 B.1 C.2 D.312.为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加三个贫困县的调研工作,每个县至少去1人,且甲、乙两人约定去同一个贫困县,则不同的派遣方案共有()A.24 B.36 C.48 D.64二、填空题:本题共4小题,每小题5分,共20分。13.数学家狄里克雷对数论,数学分析和数学物理有突出贡献,是解析数论的创始人之一.函数,称为狄里克雷函数.则关于有以下结论:①的值域为;②;③;④其中正确的结论是_______(写出所有正确的结论的序号)14.已知复数(为虚数单位),则的共轭复数是_____,_____.15.若变量,满足约束条件则的最大值为________.16.已知函数是定义在上的奇函数,则的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,其中.(1)当时,设函数,求函数的极值.(2)若函数在区间上递增,求的取值范围;(3)证明:.18.(12分)如图,在中,,的角平分线与交于点,.(Ⅰ)求;(Ⅱ)求的面积.19.(12分)如图,三棱锥中,,,,,.(1)求证:;(2)求直线与平面所成角的正弦值.20.(12分)这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件.中华民族历史上经历过很多磨难,但从来没有被压垮过,而是愈挫愈勇,不断在磨难中成长,从磨难中奋起.在这次疫情中,全国人民展现出既有责任担当之勇、又有科学防控之智.某校高三学生也展开了对这次疫情的研究,一名同学在数据统计中发现,从2020年2月1日至2月7日期间,日期和全国累计报告确诊病例数量(单位:万人)之间的关系如下表:日期1234567全国累计报告确诊病例数量(万人)1.41.72.02.42.83.13.5(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合与的关系?(2)求出关于的线性回归方程(系数精确到0.01).并预测2月10日全国累计报告确诊病例数.参考数据:,,,.参考公式:相关系数回归方程中斜率和截距的最小二乘估计公式分别为:,.21.(12分)如图,三棱柱中,侧面是菱形,其对角线的交点为,且.(1)求证:平面;(2)设,若直线与平面所成的角为,求二面角的正弦值.22.(10分)在中,角、、所对的边分别为、、,角、、的度数成等差数列,.(1)若,求的值;(2)求的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

令,可得,要使得有两个实数解,即和有两个交点,结合已知,即可求得答案.【详解】令,可得,要使得有两个实数解,即和有两个交点,,令,可得,当时,,函数在上单调递增;当时,,函数在上单调递减.当时,,若直线和有两个交点,则.实数的取值范围是.故选:C.【点睛】本题主要考查了根据零点求参数范围,解题关键是掌握根据零点个数求参数的解法和根据导数求单调性的步骤,考查了分析能力和计算能力,属于中档题.2、D【解析】

根据异面直线的判定定理、定义和性质,结合线面垂直的关系,对选项中的命题判断.【详解】A.假设直线与共面,则A,D,B,C共面,则AB,CD共面,与,矛盾,故正确.B.根据异面直线的性质知,过只有唯一平面与平行,故正确.C.根据过一点有且只有一个平面与已知直线垂直知,故正确.D.根据异面直线的性质知,过不一定能作一平面与垂直,故错误.故选:D【点睛】本题主要考查异面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题.3、B【解析】

先明确该程序框图的功能是计算两个数的最大公约数,再利用辗转相除法计算即可.【详解】本程序框图的功能是计算,中的最大公约数,所以,,,故当输入,,则计算机输出的数是57.故选:B.【点睛】本题考查程序框图的功能,做此类题一定要注意明确程序框图的功能是什么,本题是一道基础题.4、B【解析】

建立空间直角坐标系,利用向量法计算出异面直线与所成角的余弦值.【详解】依题意三棱柱底面是正三角形且侧棱垂直于底面.设的中点为,建立空间直角坐标系如下图所示.所以,所以.所以异面直线与所成角的余弦值为.故选:B【点睛】本小题主要考查异面直线所成的角的求法,属于中档题.5、D【解析】

通过分析函数与的图象,得到两函数必须有相同的零点,解方程组即得解.【详解】如图所示,函数与的图象,因为时,恒成立,于是两函数必须有相同的零点,所以,解得.故选:D【点睛】本题主要考查函数的图象的综合应用和函数的零点问题,考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.6、D【解析】

连接,根据题目,证明出四边形为平行四边形,然后,利用向量的线性运算即可求出答案【详解】连接,由,知,四边形为平行四边形,可得四边形为平行四边形,所以.【点睛】本题考查向量的线性运算问题,属于基础题7、B【解析】

设过点作的垂线,其方程为,联立方程,求得,,即,由,列出相应方程,求出离心率.【详解】解:不妨设过点作的垂线,其方程为,由解得,,即,由,所以有,化简得,所以离心率.故选:B.【点睛】本题主要考查双曲线的概念、直线与直线的位置关系等基础知识,考查运算求解、推理论证能力,属于中档题.8、B【解析】

根据指数函数的单调性,结合特殊值进行辨析.【详解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正确;而当m,n时,检验可得,A、C、D都不正确,故选:B.【点睛】此题考查根据指数幂的大小关系判断参数的大小,根据参数的大小判定指数幂或对数的大小关系,需要熟练掌握指数函数和对数函数的性质,结合特值法得出选项.9、B【解析】

根据散点图呈现的特点可以看出,二者具有相关关系,且斜率小于1.【详解】散点图里变量的对应点分布在一条直线附近,且比较密集,故可判断语文成绩和英语成绩之间具有较强的线性相关关系,且直线斜率小于1,故选B.【点睛】本题主要考查散点图的理解,侧重考查读图识图能力和逻辑推理的核心素养.10、D【解析】

由公差d=-2可知数列单调递减,再由余弦定理结合通项可求得首项,即可求出前n项和,从而得到最值.【详解】等差数列的公差为-2,可知数列单调递减,则,,中最大,最小,又,,为三角形的三边长,且最大内角为,由余弦定理得,设首项为,即得,所以或,又即,舍去,,d=-2前项和.故的最大值为.故选:D【点睛】本题考查等差数列的通项公式和前n项和公式的应用,考查求前n项和的最值问题,同时还考查了余弦定理的应用.11、C【解析】

由不等式恒成立问题分类讨论:①当,②当,③当,考查方程的解的个数,综合①②③得解.【详解】①当时,,满足题意,②当时,,,,,故不恒成立,③当时,设,,令,得,,得,下面考查方程的解的个数,设(a),则(a)由导数的应用可得:(a)在为减函数,在,为增函数,则(a),即有一解,又,均为增函数,所以存在1个使得成立,综合①②③得:满足条件的的个数是2个,故选:.【点睛】本题考查了不等式恒成立问题及利用导数研究函数的解得个数,重点考查了分类讨论的数学思想方法,属难度较大的题型.12、B【解析】

根据题意,有两种分配方案,一是,二是,然后各自全排列,再求和.【详解】当按照进行分配时,则有种不同的方案;当按照进行分配,则有种不同的方案.故共有36种不同的派遣方案,故选:B.【点睛】本题考查排列组合、数学文化,还考查数学建模能力以及分类讨论思想,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、②【解析】

根据新定义,结合实数的性质即可判断①②③,由定义求得比小的有理数个数,即可确定④.【详解】对于①,由定义可知,当为有理数时;当为无理数时,则值域为,所以①错误;对于②,因为有理数的相反数还是有理数,无理数的相反数还是无理数,所以满足,所以②正确;对于③,因为,当为无理数时,可以是有理数,也可以是无理数,所以③错误;对于④,由定义可知,所以④错误;综上可知,正确的为②.故答案为:②.【点睛】本题考查了新定义函数的综合应用,正确理解题意是解决此类问题的关键,属于中档题.14、【解析】

直接利用复数的乘法运算化简,从而得到复数的共轭复数和的模.【详解】,则复数的共轭复数为,且.故答案为:;.【点睛】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础的计算题.15、7【解析】

画出不等式组表示的平面区域,数形结合,即可容易求得目标函数的最大值.【详解】作出不等式组所表示的平面区域,如下图阴影部分所示.观察可知,当直线过点时,有最大值,.故答案为:.【点睛】本题考查二次不等式组与平面区域、线性规划,主要考查推理论证能力以及数形结合思想,属基础题.16、【解析】

先利用辅助角公式将转化成,根据函数是定义在上的奇函数得出,从而得出函数解析式,最后求出即可.【详解】解:,又因为定义在上的奇函数,则,则,又因为,所以,,所以.故答案为:【点睛】本题考查三角函数的化简,三角函数的奇偶性和三角函数求值,考查了基本知识的应用能力和计算能力,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)极大值,无极小值;(2).(3)见解析【解析】

(1)先求导,根据导数和函数极值的关系即可求出;(2)先求导,再函数在区间上递增,分离参数,构造函数,求出函数的最值,问题得以解决;(3)取得到,取,可得,累加和根据对数的运算性和放缩法即可证明.【详解】解:(1)当时,设函数,则令,解得当时,,当时,所以在上单调递增,在上单调递减所以当时,函数取得极大值,即极大值为,无极小值;(2)因为,所以,因为在区间上递增,所以在上恒成立,所以在区间上恒成立.当时,在区间上恒成立,当时,,设,则在区间上恒成立.所以在单调递增,则,所以,即综上所述.(3)由(2)可知当时,函数在区间上递增,所以,即,取,则.所以所以【点睛】此题考查了参数的取值范围以及恒成立的问题,以及不等式的证明,构造函数是关键,属于较难题.18、(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)在中,由余弦定理得,由正弦定理得,可得解;(Ⅱ)由(Ⅰ)可知,进而得,在中,由正弦定理得,所以的面积即可得解.试题解析:(Ⅰ)在中,由余弦定理得,所以,由正弦定理得,所以.(Ⅱ)由(Ⅰ)可知.在中,.在中,由正弦定理得,所以.所以的面积.19、(1)证明见详解;(2)【解析】

(1)取中点,根据,利用线面垂直的判定定理,可得平面,最后可得结果.(2)利用建系,假设长度,可得,以及平面的一个法向量,然后利用向量的夹角公式,可得结果.【详解】(1)取中点,连接,如图由,所以由,平面所以平面,又平面所以(2)假设,由,,.所以则,所以又,平面所以平面,所以,又,故建立空间直角坐标系,如图设平面的一个法向量为则令,所以则直线与平面所成角的正弦值为【点睛】本题考查线面垂直、线线垂直的应用,还考查线面角,学会使用建系的方法来解决立体几何问题,将几何问题代数化,化繁为简,属中档题.20、(1)可以用线性回归模型拟合与的关系;(2),预测2月10日全国累计报告确诊病例数约有4.5万人.【解析】

(1)根据已知数据,利用公式求得,再根据的值越大说明它们的线性相关性越高来判断.(2)由(1)的相关数据,求得,,写出回归方程,然后将代入回归方程求解.【详解】(1)由已知数据得,,,所以,,所以.因为与的相关近似为0.99,说明它们的线性相关性相当高,从而可以用线性回归模型拟合与的关系.(2)由(1)得,,,所以,关于的回归方程为:,2月10日,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论