A佳教育大联盟2025届数学高二上期末调研试题含解析_第1页
A佳教育大联盟2025届数学高二上期末调研试题含解析_第2页
A佳教育大联盟2025届数学高二上期末调研试题含解析_第3页
A佳教育大联盟2025届数学高二上期末调研试题含解析_第4页
A佳教育大联盟2025届数学高二上期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

A佳教育大联盟2025届数学高二上期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.我国古代数学名著《算法统宗》中说:“九百九十六斤棉,赠分八子做盘缠,次第每人多十七,要将第八数来言,务要分明依次第,孝和休惹外人传.”意为:“996斤棉花,分别赠送给8个子女做旅费,从第一个孩子开始,以后每人依次多17斤,直到第8个孩子为止.分配时一定要依照次序分,要顺从父母,兄弟间和气,不要引得外人说闲话.”在这个问题中,第5个孩子分到棉花为()A.133斤 B.116斤C.99斤 D.65斤2.气象台正南方向的一台风中心,正向北偏东30°方向移动,移动速度为,距台风中心以内的地区都将受到影响,若台风中心的这种移动趋势不变,气象台所在地受到台风影响持续时间大约是()A. B.C. D.3.已知实数,满足不等式组,若,则的最小值为()A. B.C. D.4.若,(),则,的大小关系是A. B.C. D.,的大小由的取值确定5.设集合,集合,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知等比数列中,,则这个数列的公比是()A.2 B.4C.8 D.167.已知双曲线,点F为其左焦点,点B,若BF所在直线与双曲线的其中一条渐近线垂直,则该双曲线的离心率为()A. B.C. D.8.下列命题中正确的是()A.函数最小值为2.B.函数的最小值为2.C.函数的最小值为D.函数的最大值为9.正数a,b满足,若不等式对任意实数x恒成立,则实数m的取值范围是A. B.C. D.10.已知等差数列的前n项和为,且,,若(,且),则i的取值集合是()A. B.C. D.11.已知直线在两个坐标轴上的截距之和为7,则实数m的值为()A.2 B.3C.4 D.512.已知F(3,0)是椭圆的一个焦点,过F且垂直x轴的弦长为,则该椭圆的方程为()A.+=1 B.+=1C.+=1 D.+=1二、填空题:本题共4小题,每小题5分,共20分。13.已知向量与是平面的两个法向量,则__________14.若不等式的解集是,则的值是___________.15.圆关于直线对称的圆的方程为______16.如图,在棱长都为的平行六面体中,,,两两夹角均为,则________;请选择该平行六面体的三个顶点,使得经过这三个顶点的平面与直线垂直.这三个顶点可以是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)数列满足,,.(1)证明:数列是等差数列;(2)设,求数列的前项和.18.(12分)函数(1)求在上的单调区间;(2)当时,不等式恒成立,求实数a的取值范围19.(12分)已知数列是递增的等比数列,是其前n项和,,(1)求数列的通项公式;(2)设,求数列的前n项和20.(12分)在平面直角坐标系中,已知点,轴于点,是线段上的动点,轴于点,于点,与相交于点.(1)判断点是否在抛物线上,并说明理由;(2)过点作抛物线的切线交轴于点,过抛物线上的点作抛物线的切线交轴于点,……,以此类推,得到数列,求,及数列的通项公式.21.(12分)已知椭圆的左、右焦点分别为,离心率为,圆:过椭圆的三个顶点,过点的直线(斜率存在且不为0)与椭圆交于两点(1)求椭圆的标准方程(2)证明:在轴上存在定点,使得为定值,并求出定点的坐标22.(10分)如图,几何体中,平面,,,,E是中点,二面角的平面角为.(1)求证:平面;(2)求直线与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据等差数列的前n项和公式、等差数列的通项公式进行求解即可.【详解】依题意得,八个子女所得棉花斤数依次构成等差数列,设该等差数列为,公差为d,前n项和为,第一个孩子所得棉花斤数为,则由题意得,,解得,故选:A2、D【解析】利用余弦定理进行求解即可.【详解】如图所示:设台风中心为,,小时后到达点处,即,当时,气象台所在地受到台风影响,由余弦定理可知:,于是有:,解得:,所以气象台所在地受到台风影响持续时间大约是,故选:D3、B【解析】作出不等式组对应的平面区域,然后根据线性规划的几何意义求得答案.【详解】作出不等式组所对应的可行域如图三角形阴影部分,平行移动直线直线,可以看到当移动过点A时,在y轴上的截距最小,联立,解得,当且仅当动直线即过点时,取得最小值为,故选:B4、A【解析】∵且,∴,又,∴,故选A.5、A【解析】解不等式求集合,然后判断两个集合的关系【详解】,解得,故,可化为或,解得或,故,故“”是“”的充分不必要条件故选:A6、A【解析】直接利用公式计算即可.【详解】设等比数列的公比为,由已知,,所以,解得.故选:A7、C【解析】设出双曲线半焦距c,利用斜率坐标公式结合垂直关系列式计算作答.【详解】设双曲线半焦距为c,则,直线BF的斜率为,双曲线的渐近线为:,因直线BF与双曲线的一条渐近线垂直,则有,即,于是得,而,解得,所以双曲线的离心率为.故选:C8、D【解析】根据基本不等式知识对选项逐一判断【详解】对于A,时为负值,故A错误对于B,,而无解,无法取等,故B错误对于,当且仅当即时等号成立,故,D正确,C错误故选:D9、A【解析】利用基本不等式求得的最小值,把问题转化为恒成立的类型,求解的最大值即可.【详解】,,且a,b为正数,,当且仅当,即时,,若不等式对任意实数x恒成立,则对任意实数x恒成立,即对任意实数x恒成立,,,故选:A【点睛】本题主要考查了恒成立问题,基本不等式求最值,二次函数求最值,属于中档题.10、C【解析】首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.【详解】设公差为d,由题知,,解得,,所以数列为,故.故选:C.【点睛】本题主要考查了等差数列的基本量的求解,属于基础题.11、C【解析】求出直线方程在两坐标轴上的截距,列出方程,求出实数m的值.【详解】当时,,故不合题意,故,,令得:,令得:,故,解得:.故选:C12、C【解析】根据已知条件求得,由此求得椭圆的方程.【详解】依题意,所以椭圆方程为.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由且为非零向量可直接构造方程求得,进而得到结果.【详解】由题意知:,,解得:(舍)或,.故答案为:.14、【解析】利用和是方程的两根,再利用根与系数的关系即可求出和的值,即可得的值.【详解】由题意可得:方程的两根是和,由根与系数的关系可得:,所以,所以,故答案为:15、【解析】求出圆心关于直线对称点,从而求出对称圆的方程.【详解】圆心为,半径为1,设关于对称点为,则,解得:,故对称点为,故圆关于直线对称的圆的方程为.故答案为:16、①.②.点或点(填出其中一组即可)【解析】(1)以向量,,为基底分别表达出向量和,展开即可解决;(2)由上一问可知,用上一问同样的方法可以证明出,这样就证明了平面与直线垂直.【详解】(1)令,,,则,则有,故(2)令,,,则,则有,故故,即又由(1)之,,故直线垂直于平面同理可证直线垂直于平面故答案为:0;点或点三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】(1)将的两边同除以,得到,由等差数列的定义,即可作出证明;(2)有(1)求出,利用错位相减法即可求解数列的前项和.试题解析:(1)证明:由已知可得=+1,即-=1.所以是以=1为首项,1为公差的等差数列(2)由(1)得=1+(n-1)·1=n,所以an=n2.从而bn=n·3n.Sn=1·31+2·32+3·33+…+n·3n,①3Sn=1·32+2·33+…+(n-1)·3n+n·3n+1.②①-②得-2Sn=31+32+…+3n-n·3n+1=-n·3n+1=.所以Sn=.点睛:本题主要考查了等差数列的定义、等差数列的判定与证明和数列的求和,着重考查了学生分析问题和解答问题的能力,本的解答中利用等差数列的定义得到数列为等差数列,求解的表达式,从而化简得到,利用乘公比错位相减法求和中,准确计算是解答的一个难点.18、(1)单调递增区间为;单调递减区间为和(2)【解析】(1)求出,然后可得答案;(2)由条件可得,设,则,然后利用导数可得在上单调递增,,然后分、两种情况讨论求解即可.【小问1详解】由题可得令,得;令,得,所以f(x)的单调递增区间为;单调递减区间为和【小问2详解】由,得,即设,则设,则当时,,,所以所以即在上单调递增,则若,则,所以h(x)在上单调递增所以h(x)≥h(0)=0恒成立,符合题意若a>2,则,必存在正实数,满足:当时,,h(x)单调递减,此时h(x)<h(0)=0,不符合题意综上所述,a的取值范围是19、(1);(2).【解析】(1)根据给定条件求出数列的公比即可计算得解.(2)由(1)的结论求出,然后利用分组求和方法求解作答.【小问1详解】设等比数列的公比为q,而,且是递增数列,则,,解得,所以数列的通项公式是:.【小问2详解】由(1)知,,,,所以数列的前n项和.20、(1)在抛物线上,理由见解析(2),,.【解析】(1)根据直线的方程设出点的坐标,利用已知条件求出点的坐标即可判断点是否在抛物线上;(2)设出直线的直线方程,与抛物线联立,令,即可求出,同理可以求出,设出直线的直线方程,与抛物线联立,令即可求出的方程,若令,,即,故数列是首项,公比为的等比数列,即可求出数列的通项公式.【小问1详解】由已知条件得直线的方程为,设点,则,由直线的方程为可得点的坐标为,点满足抛物线,则点是否在抛物线上;【小问2详解】设的直线方程为,将直线与抛物线联立得,,解得,的直线方程为,则,即,由此可知,设的直线方程为,将直线与抛物线联立得,,解得,的直线方程为,则,即,由此可知设点,设直线方程为,将直线与抛物线联立得,,其中,即,,解得,直线的方程为,即,令得,即直线过点,则直线的斜率为,直线的方程也可以表示为,即,令,,即,则,即数列是首项,公比为的等比数列,故.21、(1);(2)见解析,定点【解析】(1)先判断圆经过椭圆的上、下顶点和右顶点,令圆方程中的,得,即.再由求即可.(2)设在轴上存在定点,使得为定值,根据题意,设直线的方程为,联立可得,再运算将韦达定理代入化简有与k无关即可.【详解】(1)由圆方程中的时,的两根不为相反数,故可设圆经过椭圆的上、下顶点和右顶点,令圆方程中的,得,即有又,解得∴椭圆的标准方程为(2)证明:设在轴上存在定点,使得为定值,由(1)可得,设直线的方程为,联立可得,设,则,,要使为定值,只需,解得∴在轴上存在定点,使得为定值,定点的坐标为【点睛】本题主要考查椭圆的几何性质和直线与椭圆的位置关系,还考查了数形结合的思想和运算求解的能力,属于中档题.22、(1)证明见解答;(2)【解析】(1)平面,可得,是二面角的平面角,由余弦定理可得,,从而可证平面;(2)以为坐标原点,,,所在直线为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论