安徽省六安市2025届高一上数学期末质量检测试题含解析_第1页
安徽省六安市2025届高一上数学期末质量检测试题含解析_第2页
安徽省六安市2025届高一上数学期末质量检测试题含解析_第3页
安徽省六安市2025届高一上数学期末质量检测试题含解析_第4页
安徽省六安市2025届高一上数学期末质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省六安市2025届高一上数学期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点落在角的终边上,且∈[0,2π),则的值为()A B.C. D.2.函数是A.最小正周期为的奇函数B.最小正周期为的奇函数C.最小正周期为的偶函数D.最小正周期为的偶函数3.已知,,,则、、的大小关系为()A. B.C. D.4.函数在区间上的最大值为A.2 B.1C. D.1或5.已知,,则()A. B.C. D.6.玉溪某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产件,则平均仓储时间为天,且每件产品每天的仓储费用为1元,为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品A.60件 B.80件C.100件 D.120件7.已知函数为上偶函数,且在上的单调递增,若,则满足的的取值范围是()A. B.C. D.8.若sin(),α是第三象限角,则sin()=()A. B.C. D.9.直线l1:x+ay+1=0与l2:(a﹣3)x+2y﹣5=0(a∈R)互相垂直,则直线l2的斜率为()A. B.C.1 D.﹣110.函数(且)的图像恒过定点()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.给出下列说法:①和直线都相交的两条直线在同一个平面内;②三条两两相交的直线一定在同一个平面内;③有三个不同公共点的两个平面重合;④两两相交且不过同一点的四条直线共面其中正确说法的序号是______12.若,且,则上的最小值是_________.13.幂函数的图像经过点,则_______14.已知,函数,若函数有两个零点,则实数k的取值范围是________15.若则函数的最小值为________16.已知角的终边上有一点,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)求方程的解集;(2)定义:.已知定义在上的函数,求函数的解析式;(3)在(2)的条件下,在平面直角坐标系中,画出函数的简图,并根据图象写出函数的单调区间和最小值.18.已知函数且.(1)求函数的定义域;(2)判断的奇偶性并予以证明;(3)若0<a<1,解关于x的不等式.19.已知函数.(1)求函数的定义域;(2)若,求值;(3)求证:当时,20.已知扇形的圆心角是,半径为,弧长为.(1)若,,求扇形的弧长;(2)若扇形的周长为,当扇形的圆心角为多少弧度时,这个扇形的面积最大,并求出此时扇形面积的最大值.21.已知,,且.(1)求的值;(2)求β.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由点的坐标可知是第四象限的角,再由可得的值【详解】由知角是第四象限的角,∵,θ∈[0,2π),∴.故选:D【点睛】此题考查同角三角函数的关系,考查三角函数的定义,属于基础题2、C【解析】根据题意,由于函数是,因此排除线线A,B,然后对于选项C,D,由于正弦函数周期为,那么利用图象的对称性可知,函数的周期性为,故选C.考点:函数的奇偶性和周期性点评:解决的关键是根据已知函数解析式俩分析确定奇偶性,那么同时结合图像的变换来得到周期,属于基础题3、C【解析】利用对数函数、指数函数的单调性结合中间值法可得出、、的大小关系.【详解】因为,,,因此,.故选:C.4、A【解析】利用同角三角函数的基本关系化简函数f(x)的解析式为﹣(sinx﹣1)2+2,根据二次函数的性质,求得函数f(x)的最大值【详解】∵函数f(x)=cos2x+2sinx=1﹣sin2x+2sinx=﹣(sinx﹣1)2+2,∴sinx≤1,∴当sinx=1时,函数f(x)取得最大值为2,故选A【点睛】本题主要考查同角三角函数的基本关系,正弦函数的定义域和值域,二次函数的性质,属于中档题5、C【解析】详解】分析:求解出集合,得到,即可得到答案详解:由题意集合,,则,所以,故选C点睛:本题考查了集合的混合运算,其中正确求解集合是解答的关键,着重考查了学生的推理与运算能力6、B【解析】确定生产件产品的生产准备费用与仓储费用之和,可得平均每件的生产准备费用与仓储费用之和,利用基本不等式,即可求得最值【详解】解:根据题意,该生产件产品的生产准备费用与仓储费用之和是这样平均每件的生产准备费用与仓储费用之和为(为正整数)由基本不等式,得当且仅当,即时,取得最小值,时,每件产品的生产准备费用与仓储费用之和最小故选:【点睛】本题考查函数的构建,考查基本不等式的运用,属于中档题,运用基本不等式时应该注意取等号的条件,才能准确给出答案,属于基础题7、B【解析】根据偶函数的性质和单调性解函数不等式【详解】是偶函数,.所以不等式化为,又在上递增,所以,或,即或故选:B8、C【解析】由α是第三象限角,且sin(),可得为第二象限角,即可得,然后结合,利用两角和的正弦公式展开运算即可.【详解】解:因为α是第三象限角,则,又sin(),所以,即为第二象限角,则,则,故选:C.【点睛】本题考查了角的拼凑,重点考查了两角和的正弦公式,属基础题.9、C【解析】利用直线l1:x+ay+1=0与l2:(a﹣3)x+2y﹣5=0(a∈R)互相垂直,则,解出即可.【详解】因为直线l1:x+ay+1=0与l2:(a﹣3)x+2y﹣5=0(a∈R)互相垂直.所以,即.解得:.故选:C【点睛】本题考查由两条直线互相垂直求参数的问题,属于基础题10、C【解析】本题可根据指数函数的性质得出结果.【详解】当时,,则函数的图像恒过定点,故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、④【解析】利用正方体可判断①②的正误,利用公理3及其推论可判断③④的正误.【详解】如图,在正方体中,,,但是异面,故①错误.又交于点,但不共面,故②错误.如果两个平面有3个不同公共点,且它们共线,则这两个平面可以相交,故③错误.如图,因为,故共面于,因为,故,故即,而,故,故即即共面,故④正确.故答案为:④12、【解析】将的最小值转化为求的最小值,然后展开后利用基本不等式求得其最小值【详解】解:因为,且,,当且仅当时,即,时等号成立;故答案为:13、【解析】本题首先可以根据函数是幂函数设函数解析式为,然后带入点即可求出的值,最后得出结果。【详解】因为函数是幂函数,所以可设幂函数,带入点可得,解得,故幂函数,即,答案为。【点睛】本题考查函数解析式的求法,考查对幂函数的性质的理解,可设幂函数解析式为,考查计算能力,是简单题。14、【解析】由题意函数有两个零点可得,得,令与,作出函数与的图象如图所示:由图可知,函数有且只有两个零点,则实数的取值范围是.故答案为:.【点睛】本题考查分段函数的应用,函数零点的判断等知识,解题时要灵活应用数形结合思想15、1【解析】结合图象可得答案.【详解】如图,函数在同一坐标系中,且,所以在时有最小值,即.故答案为:1.16、【解析】直接根据任意角的三角函数的定义计算可得;【详解】解:因为角的终边上有一点,则所以,所以故答案为:【点睛】考查任意角三角函数的定义的应用,考查计算能力,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)图象见解析,单调递减区间是,单调递增区间是,最小值为1【解析】(1)根据题意可得,平方即可求解.(2)由题意比较与大小,从而可得出答案.(3)由(2)得到的函数关系,作出函数图像,根据图像可得函数的单调区间和最小值.【小问1详解】由,得且,解得,;所以方程的解集为【小问2详解】由已知得.【小问3详解】函数的图象如图实线所示:函数的单调递减区间是,单调递增区间是,其最小值为1.18、(1)(2)奇函数.(3)【解析】(1)根据对数的真数应大于0,列出不等式组可得函数的定义域;(2)函数为奇函数,利用可得结论;(3)不等式等价于,利用对数函数的单调性得,解不等式即可.试题解析:(1)由题得,所以函数的定义域为;(2)函数为奇函数.证明:由(1)知函数的定义域关于原点对称,且,所以函数为奇函数;(3)由可得,即,又0<a<1,所以,故,即,解得,所以原不等式的解集为.点睛:本题主要考查了对数函数的定义域,函数奇偶性的证明,以及指数函数、对数函数的不等式解法,注重对基础的考查;要使对数函数有意义,需满足真数部分大于0,函数奇偶性的证明即判断和的关系,而对于指、对数类型的不等式主要是依据函数的单调性求解.19、(1);(2);(3)证明见解析.【解析】(1)利用真数大于零列出不等式组,其解为,它是函数的定义域.(2)把方程化为后得到,故.(3)分别计算就能得到.解析:(1)由,得函数的定义域为.(2),即,∴,∴且,∴.(3)∵,,∴时,,又∵,∴.20、(1);(2)当时,扇形面积最大值.【解析】(1)利用扇形弧长公式直接求解即可;(2)根据扇形周长可得,代入扇形面积公式,由二次函数最值可确定结果.【小问1详解】,扇形的弧长;【小问2详解】扇形的周长,,扇形面积,则当,,即当时,扇形面积最大值.21、(1);.【解析】(1)先根据,且,求出,再求;(2)先根据,,求出,再根据求解即可.【详解】(1)因且,所以,所以.(2)因为,所以,又因为,所以,,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论