![2025届四川省会理县第一中学高二上数学期末经典模拟试题含解析_第1页](http://file4.renrendoc.com/view7/M01/2E/2F/wKhkGWcNa8eAUSiaAAHGdGEIp2c243.jpg)
![2025届四川省会理县第一中学高二上数学期末经典模拟试题含解析_第2页](http://file4.renrendoc.com/view7/M01/2E/2F/wKhkGWcNa8eAUSiaAAHGdGEIp2c2432.jpg)
![2025届四川省会理县第一中学高二上数学期末经典模拟试题含解析_第3页](http://file4.renrendoc.com/view7/M01/2E/2F/wKhkGWcNa8eAUSiaAAHGdGEIp2c2433.jpg)
![2025届四川省会理县第一中学高二上数学期末经典模拟试题含解析_第4页](http://file4.renrendoc.com/view7/M01/2E/2F/wKhkGWcNa8eAUSiaAAHGdGEIp2c2434.jpg)
![2025届四川省会理县第一中学高二上数学期末经典模拟试题含解析_第5页](http://file4.renrendoc.com/view7/M01/2E/2F/wKhkGWcNa8eAUSiaAAHGdGEIp2c2435.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届四川省会理县第一中学高二上数学期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.对于实数a,b,c,下列命题为真命题的是()A.若,则 B.若,则C.若,则 D.若,则2.如图所示,正方形边长为2cm,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.16cm B.cmC.8cm D.cm3.设是双曲线与圆在第一象限的交点,,分别是双曲线的左,右焦点,若,则双曲线的离心率为()A. B.C. D.4.三等分角是“古希腊三大几何问题”之一,数学家帕普斯巧妙地利用圆弧和双曲线解决了这个问题.如图,在圆D中,为其一条弦,,C,O是弦的两个三等分点,以A为左焦点,B,C为顶点作双曲线T.设双曲线T与弧的交点为E,则.若T的方程为,则圆D的半径为()A. B.1C.2 D.5.如图,在四棱锥中,平面,底面是正方形,,则下列数量积最大的是()A. B.C. D.6.如图,是对某位同学一学期次体育测试成绩(单位:分)进行统计得到的散点图,关于这位同学的成绩分析,下列结论错误的是()A.该同学的体育测试成绩总的趋势是在逐步提高,且次测试成绩的极差超过分B.该同学次测试成绩的众数是分C.该同学次测试成绩的中位数是分D.该同学次测试成绩与测试次数具有相关性,且呈正相关7.已知不等式解集为,下列结论正确的是()A. B.C. D.8.已知焦点在轴上的双曲线的一条渐近线方程为,则该双曲线的离心率为()A. B.C.2 D.9.如图,在平行六面体中,底面是边长为的正方形,若,且,则的长为()A. B.C. D.10.如图,在三棱柱中,平面,,,分别是,中点,在线段上,则与平面的位置关系是()A.垂直 B.平行C.相交但不垂直 D.要依点的位置而定11.函数极小值为()A. B.C. D.12.瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上,这条直线被后人称为三角形的“欧拉线”.若满足,顶点,且其“欧拉线”与圆相切,则:①.圆M上的点到原点的最大距离为②.圆M上存在三个点到直线的距离为③.若点在圆M上,则的最小值是④.若圆M与圆有公共点,则上述结论中正确的有()个A.1 B.2C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若有两个零点,则的范围是______14.古希腊数学家阿波罗尼斯发现:平面上到两定点A,B的距离之比为常数的点的轨迹是—个圆心在直线上的圆.该圆被称为阿氏圆,如图,在长方体中,,点E在棱上,,动点P满足,若点P在平面内运动,则点P对应的轨迹的面积是___________;F为的中点,则三棱锥体积的最小值为___________.15.已知函数,则的值是______.16.用一个平面去截半径为5cm的球,截面面积是则球心到截面的距离为_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,抛物线:,点,过点的直线l与抛物线交于A,B两点:当l与抛物线的对称轴垂直时,(1)求抛物线的标准方程;(2)若点A在第一象限,记的面积为,的面积为,求的最小值18.(12分)已知抛物线C:上有一动点,,过点P作抛物线C的切线交y轴于点Q(1)判断线段PQ的垂直平分线是否过定点?若过,求出定点坐标;若不过,请说明理由;(2)过点P作垂线交抛物线C于另一点M,若切线的斜率为k,设的面积为S,求的最小值19.(12分)奋发学习小组共有3名学生,在某次探究活动中,他们每人上交了1份作业,现各自从这3份作业中随机地取出了一份作业.(1)每个学生恰好取到自己作业的概率是多少?(2)每个学生不都取到自己作业的概率是多少?(3)每个学生取到的都不是自己作业的概率是多少?20.(12分)已知A,B两地相距200km,某船从A地逆水到B地,水速为8km/h,船在静水中的速度为vkm/h(v>8).若船每小时的燃料费与其在静水中速度的平方成正比,比例系数为k,当v=12km/h,每小时的燃料费为720元(1)求比例系数k(2)当时,为了使全程燃料费最省,船的实际前进速度应为多少?(3)当(x为大于8的常数)时,为了使全程燃料费最省,船的实际前进速度应为多少?21.(12分)已知数列的前n项和为,当时,;数列中,.直线经过点(1)求数列的通项公式和;(2)设,求数列的前n项和,并求的最大整数n22.(10分)已知抛物线经过点.(Ⅰ)求抛物线C的方程及其焦点坐标;(Ⅱ)过抛物线C上一动点P作圆的两条切线,切点分别为A,B,求四边形面积的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】判断不等式的真假,就是要考虑在不等式的变形过程中是否遵守不等式变形的规则.【详解】若,令,,,,,故A错误;若,令c=0,则,故B错误;若,令a=-1,b=-2,,,故C错误;∵,故,根据不等式运算规则,在不等式的两边同时乘以或除以一个正数,不等式的方向不变,故D正确.故选:D.2、A【解析】由直观图确定原图形中平行四边形中线段的长度与关系,然后计算可得【详解】由斜二测画法,原图形是平行四边形,,又,,,所以,周长为故选:A3、B【解析】先由双曲线定义与题中条件得到,,求出,,再由题意得到,即可根据勾股定理求出结果.【详解】解:根据双曲线定义:,,∴,∴,,,∴是圆的直径,∴,中,,得故选【点睛】本题主要考查求双曲线的离心率,熟记双曲线的简单性质即可,属于常考题型.4、C【解析】由题设写出双曲线的方程,对比系数,求出即可获解【详解】由题知所以双曲线的方程为又由题设的方程为,所以,即设AB的中点为,则由.所以,即圆的半径为2故选:C5、B【解析】设,根据线面垂直的性质得,,,,根据向量数量积的定义逐一计算,比较可得答案.【详解】解:设,因为平面,所以,,,,又底面是正方形,所以,,对于A,;对于B,;对于C,;对于D,,所以数量积最大的是,故选:B.6、C【解析】根据给定的散点图,逐一分析各个选项即可判断作答.【详解】对于A,由散点图知,8次测试成绩总体是依次增大,极差为,A正确;对于B,散点图中8个数据的众数是48,B正确;对于C,散点图中的8个数由小到大排列,最中间两个数都是48,则次测试成绩的中位数是分,C不正确;对于D,散点图中8个点落在某条斜向上的直线附近,则次测试成绩与测试次数具有相关性,且呈正相关,D正确.故选:C7、C【解析】根据不等式解集为,得方程的解为或,且,利用韦达定理即可将用表示,即可判断各选项的正误.【详解】解:因为不等式解集为,所以方程的解为或,且,所以,所以,所以,故ABD错误;,故C正确.故选:C.8、D【解析】由题意,化简即可得出双曲线的离心率【详解】解:由题意,.故选:D9、D【解析】由向量线性运算得,利用数量积的定义和运算律可求得,由此可求得.【详解】由题意得:,,且,又,,,,.故选:D.10、B【解析】构造三角形,先证∥平面,同理得∥平面,再证平面∥平面即可.【详解】连接,,.因为在直三棱柱中,M,N分别是,AB的中点,所以∥.因为平面内,平面,所以∥平面.同理可得AM∥平面.又因为,平面,平面,所以平面∥平面.又因为P点在线段上,所以∥平面.故选:B.11、A【解析】利用导数分析函数的单调性,可求得该函数的极小值.【详解】对函数求导得,令,可得或,列表如下:减极小值增极大值减所以,函数的极小值为.故选:A.12、A【解析】由题意求出的垂直平分线可得△的欧拉线,再由圆心到直线的距离求得,得到圆的方程,求出圆心到原点的距离,加上半径判断A;求出圆心到直线的距离判断B;再由的几何意义,即圆上的点与定点连线的斜率判断C;由两个圆有公共点可得圆心距与两个半径之间的关系,求得的取值范围判断D【详解】由题意,△的欧拉线即的垂直平分线,,,的中点坐标为,,则的垂直平分线方程为,即由“欧拉线”与圆相切,到直线的距离,,则圆的方程为:,圆心到原点的距离为,则圆上的点到原点的最大距离为,故①错误;圆心到直线的距离为,圆上存在三个点到直线的距离为,故②正确;的几何意义:圆上的点与定点连线的斜率,设过与圆相切的直线方程为,即,由,解得,的最小值是,故③错误;的圆心坐标,半径为,圆的的圆心坐标为,半径为,要使圆与圆有公共点,则圆心距的范围为,,,解得,故④错误故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用导数求出函数的最小值,结合函数的图象列式可求出结果.【详解】,当时,,在上为增函数,最多只有一个零点,不符合题意;当时,令,得,令,得,所以在上为减函数,在上为增函数,所以在时取得极小值为,也是最小值,因为当趋近于正负无穷时,都是趋近于正无穷,所以要使有两个零点,只要,即就可以了.所以的范围是故答案为:.14、①.②.【解析】建立空间直角坐标系,根据,可得对应的轨迹方程;先求的面积,其是固定值,要使体积最小,只需求点到平面的距离的最小值即可.【详解】分别以为轴建系,设,而,,,,.由,有,化简得对应的轨迹方程为.所以点P对应的轨迹的面积是.易得的三个边即是边长为为的等边三角形,其面积为,,设平面的一个法向量为,则有,可取平面的一个法向量为,根据点的轨迹,可设,,所以点到平面的距离,所以故答案为:;15、【解析】求出,代值计算可得的值.【详解】因为,则,因此,.故答案为:.16、4cm【解析】根据圆面积公式算出截面圆的半径,利用球的截面圆性质与勾股定理算出球心到截面的距离【详解】解:设截面圆的半径为r,截面的面积是,,可得又球的半径为5cm,根据球的截面圆性质,可得截面到球心的距离为故答案为:4cm【点睛】本题主要考查了球的截面圆性质、勾股定理等知识,考查了空间想象能力,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)8.【解析】(1)将点代入抛物线方程可解得基本量.(2)设直线AB为,代入联立得关于的一元二次方程,运用韦达定理,得到关于的函数关系,再求函数最值.【小问1详解】当l与抛物线的对称轴垂直时,,,则代入抛物线方程得,所以抛物线方程是【小问2详解】设点,,直线AB方程为,联立抛物线整理得:,,∴,,有,由A在第一象限,则,即,∴,可得,又O到AB的距离,∴,而,∴,,当,,单调递减;,,单调递增;∴的最小值为,此时,.18、(1)线段的垂直平分线过定点(2)【解析】(1)设切线的方程为,并与抛物线方程联立,利用判别式求得点坐标,进而求得点坐标,从而求得线段的垂直平分线的方程,进而求得定点坐标.(2)结合弦长公式求得的面积,利用基本不等式求得的最小值.【小问1详解】依题意可知切线的斜率存在,且斜率大于.设直线PQ的方程为,.由消去并化简得,由得,,则,解得,所以,在中,令得,所以,PQ中点为,所以线段PQ的中垂线方程为,即,所以线段的垂直平分线过定点.【小问2详解】由(1)可知,直线PM的方程为,即.由消去并化简得:,所以,而,所以得,,,.所以的面积,所以.当且仅当时等号成立.所以的最小值为.19、(1)(2)(3)【解析】(1)根据列举法列出所有的可能基本事件,进而得出每个学生恰好拿到自己作业的概率;(2)利用对立事件的概念即可求得结果;(3)结合(1)即可得出每个学生拿的都不是自己作业的事件数.【小问1详解】设这三个学生分别为A、B、C,A的作业为a,B的作业为b,C的作业为c,则基本事件为:,则基本事件总数为6,设每个学生恰好拿到自己作业为事件E,事件E包含的事件数为l,所以;小问2详解】设每个学生不都拿到自己作业为事件F,因为事件F的对立事件为E,所以;【小问3详解】设每个学生拿的都不是自己作业为事件G,事件G包含的事件数为2,.20、(1)5(2)8km/h(3)答案见解析【解析】(1)列出关系式,根据当v=12km/h,每小时的燃料费为720元即可求解;(2)列出燃料费的函数解析式,利用导数求其最值即可;(3)讨论x的范围,结合(2)的结论可得答案.【小问1详解】设每小时的燃料费为,则当v=12km/h,每小时的燃料费为720元,代入得.【小问2详解】由(1)得.设全程燃料费为y,则(),所以,令,解得v=0(舍去)或v=16,所以当时,;当时,,所以当v=16时,y取得最小值,故为了使全程燃料费最省,船的实际前进速度应为8km/h【小问3详解】由(2)得,若时,则y在区间上单调递减,当v=x时,y取得最小值;若时,则y区间(8,16)上单调递减,在区间上单调递增,当v=16时,y取得最小值;综上,当时,船的实际前进速度为8km/h,全程燃料
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电暖器项目筹资方案
- 2025至2030年中国金属外壳消声器数据监测研究报告
- 2025至2030年中国英式桌球台比赛台数据监测研究报告
- 2025至2030年中国外贸模拟练习系统数据监测研究报告
- 2025至2030年中国印花不锈钢筷子数据监测研究报告
- 2025-2030年听力筛查与助听器适配服务行业跨境出海战略研究报告
- 2025-2030年手工花瓶彩绘行业跨境出海战略研究报告
- 2025-2030年户外露营遮阳伞行业跨境出海战略研究报告
- 2025-2030年户外游艺设施设计与安装行业深度调研及发展战略咨询报告
- 医药信息化学品的生物合成途径与代谢工程考核试卷
- 建设工程工作总结报告
- 脾破裂术后健康宣教课件
- 三废环保管理培训
- 财务管控的间接成本
- 藏族唐卡艺术特色分析
- 操作系统课程设计报告
- 护士团队的协作和领导力培养培训课件
- QFD模板含计算公式计分标准说明模板
- 医院护理培训课件:《早产儿姿势管理与摆位》
- 人工智能在生物医学伦理与法律中的基因编辑与生命伦理问题研究
- 《论文的写作技巧》课件
评论
0/150
提交评论