2025届安徽省滁州市第一中学高二数学第一学期期末监测模拟试题含解析_第1页
2025届安徽省滁州市第一中学高二数学第一学期期末监测模拟试题含解析_第2页
2025届安徽省滁州市第一中学高二数学第一学期期末监测模拟试题含解析_第3页
2025届安徽省滁州市第一中学高二数学第一学期期末监测模拟试题含解析_第4页
2025届安徽省滁州市第一中学高二数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省滁州市第一中学高二数学第一学期期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在平面直角坐标系中,抛物线上点到焦点的距离为3,则焦点到准线的距离为()A. B.C.1 D.2.已知向量,满足条件,则的值为()A.1 B.C.2 D.3.已知半径为2的圆经过点(5,12),则其圆心到原点的距离的最小值为()A.10 B.11C.12 D.134.已知命题:抛物线的焦点坐标为;命题:等轴双曲线的离心率为,则下列命题是真命题的是()A. B.C. D.5.在正三棱锥S-ABC中,AB=4,D、E分别是SA、AB中点,且DE⊥CD,则三棱锥S-ABC外接球的体积为()A.π B.πC.π D.π6.据记载,欧拉公式是由瑞士著名数学家欧拉发现的,该公式被誉为“数学中的天桥”特别是当时,得到一个令人着迷的优美恒等式,将数学中五个重要的数(自然对数的底,圆周率,虚数单位,自然数的单位和零元)联系到了一起,有些数学家评价它是“最完美的数学公式”.根据欧拉公式,复数的虚部()A. B.C. D.7.已知抛物线上的一点,则点M到抛物线焦点F的距离等于()A.6 B.5C.4 D.28.已知x,y是实数,且,则的最大值是()A. B.C. D.9.已知空间向量,则()A. B.C. D.10.抛物线上点的横坐标为4,则到抛物线焦点的距离等于()A.12 B.10C.8 D.611.函数的最大值为()A.32 B.27C.16 D.4012.已知{}为等比数列.,则=()A.—4 B.4C.—4或4 D.16二、填空题:本题共4小题,每小题5分,共20分。13.直线被圆截得的弦长为_______14.不等式的解集为,则________15.已知O为坐标原点,椭圆T:,过椭圆上一点P的两条直线PA,PB分别与椭圆交于A,B,设PA,PB的中点分别为D,E,直线PA,PB的斜率分别是,,若直线OD,OE的斜率之和为2,则的最大值为_______16.椭圆的两焦点为,,P为C上的一点(P与,不共线),则的周长为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)平行六面体,(1)若,,,,,,求长;(2)若以顶点A为端点的三条棱长均为2,且它们彼此的夹角都是60°,则AC与所成角的余弦值18.(12分)已知椭圆:的左、右焦点分别为,,离心率等于,点,且的面积等于(1)求椭圆的标准方程;(2)已知斜率存在且不为0的直线与椭圆交于A,B两点,当点A关于y轴的对称点在直线PB上时,直线是否过定点?若过定点,求出此定点;若不过,请说明理由19.(12分)已知圆,圆,动圆与圆外切,且与圆内切.(1)求动圆圆心的轨迹的方程,并说明轨迹是何种曲线;(2)设过点的直线与直线交于两点,且满足的面积是面积的一半,求的面积20.(12分)已知椭圆的左,右焦点分别为,三个顶点(左、右顶点和上顶点)构成的三角形的面积为,离心率为方程的根.(1)求椭圆方程;(2)椭圆的一个内接平行四边形的一组对边分别过点和,如图,若这个平行四边形面积为,求平行四边形的四个顶点的纵坐标的乘积.21.(12分)已知直线方程为(1)若直线的倾斜角为,求的值;(2)若直线分别与轴、轴的负半轴交于、两点,为坐标原点,求面积的最小值及此时直线的方程22.(10分)设数列的前项和为,且.(1)求数列的通项公式;(2)记,数列的前项和为,求不等式的解集.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据给定条件求出抛物线C的焦点、准线,再利用抛物线的定义求出a值计算作答.【详解】抛物线的焦点,准线,依题意,由抛物线定义得,解得,所以抛物线焦点到准线的距离为.故选:D2、A【解析】先求出坐标,进而根据空间向量垂直的坐标运算求得答案.【详解】因为,所以,解得.故选:A.3、B【解析】由条件可得圆心的轨迹是以点为圆心,半径为2的圆,然后可得答案.【详解】因为半径为2的圆经过点(5,12),所以圆心的轨迹是以点为圆心,半径为2的圆,所以圆心到原点的距离的最小值为,故选:B4、D【解析】求出的焦点坐标,及等轴双曲线的离心率,判断出为假命题,q为真命题,进而判断出答案.【详解】抛物线的焦点坐标为,故命题为假命题;命题:等轴双曲线中,,所以离心率为,故命题q为真命题,所以为真命题,其他选项均为假命题.故选:D5、C【解析】取中点,连接,证明平面,得证,然后证明平面,得两两垂直,以为棱把三棱锥补成一个正方体,正方体的对角线是其外接球的直径,而正方体的外接球也是正三棱锥的外接球,由此计算可得【详解】取中点,连接,则,,,平面,所以平面,又平面,所以,D、E分别是SA、AB的中点,则,又,所以,,平面,所以平面,而平面,所以,,是正三棱锥,因此,因此可以为棱把三棱锥补成一个正方体,正方体的对角线是其外接球的直径,而正方体的外接球也是正三棱锥的外接球,由,得,所以所求外接球直径为,半径为,球体积为故选:C6、D【解析】由欧拉公式的定义和复数的概念进行求解.【详解】由题意,得,则复数的虚部为.故选:D.7、B【解析】将点代入抛物线方程求出,再由抛物线的焦半径公式可得答案.详解】将点代入抛物线方程可得,解得则故选:B8、D【解析】将方程化为圆的标准方程,则的几何意义是圆上一点与点连线的斜率,进而根据直线与圆相切求得答案.【详解】方程可化为,表示以为圆心,为半径的圆,的几何意义是圆上一点与点A连线的斜率,设,即,当此直线与圆相切时,斜率最大或最小,当切线位于切线AB时斜率最大.此时,,,所以的最大值为.故选:D9、C【解析】A利用向量模长的坐标表示判断;B根据向量平行的判定,是否存在实数使即可判断;C向量数量积的坐标表示求即可判断;D利用向量坐标的线性运算及数量积的坐标表示求即可.【详解】因为,所以A不正确:因为不存在实数使,所以B不正确;因为,故,所以C正确;因为,所以,所以D不正确故选:C10、C【解析】根据焦半径公式即可求出【详解】因为,所以,所以故选:C11、A【解析】利用导数即可求解.【详解】因为,所以当时,;当时,.所以函数在上单调递增;在上单调递增,,因此,的最大值为.故选:A12、B【解析】根据题意先求出公比,进而用等比数列通项公式求得答案.【详解】由题意,设公比为q,则,则.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出圆心到直线的距离,结合半径,利用勾股定理可得答案.【详解】的圆心坐标为,,圆心到直线的距离,则直线被圆截得的弦长为:故答案为:14、【解析】由一元二次方程与一元二次不等式之间的关系可知,方程的两根是,所以因此.考点:一元二次方程与一元二次不等式之间的关系.15、【解析】设的坐标,用点差法求和与的关系同,与的关系,然后表示出,求得最大值【详解】设,,,则,两式相减得,∴,,则,同理,,又,∴,,当且仅当,即时等号成立,∴,故答案为:【点睛】方法点睛:本题考查直线与椭圆相交问题,考查椭圆弦中点问题.椭圆中涉及到弦的中点时,常常用点差法确定关系,即设弦端点为,弦中点为,把两点坐标代入椭圆方程,相减后可得16、【解析】结合椭圆的定义求得正确答案.【详解】椭圆方程为,所以,所以三角形的周长为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由,可得,再利用数量积运算性质即可得出;(2)以为一组基底,设与所成的角为,由求解.【小问1详解】,,,,∴,;【小问2详解】∵,,∴,∵,∴,∵=8,∴,设与所成的角为,则.18、(1)(2)【解析】(1)用待定系数法求出椭圆的标准方程;(2)设直线的方程为,设,用“设而不求法”表示出和.表示出直线PB,把A关于y轴的对称点为带入后整理化简,即可得到,从而可以判断出直线恒过定点.【小问1详解】由题意可得:,解得:,所以椭圆的标准方程为:.【小问2详解】由题意可知,直线的斜率存在且不为0,设直线的方程为,设设点A关于y轴的对称点为.联立方程组,消去y可得:,所以.因为直线PB的方程为,且点D在直线PB上,所以则,所以,则,故,因为k≠0,所以,则直线l的方程为,所以直线恒过定点.19、(1)(2)或【解析】(1)设圆的半径为,圆的半径为,圆的半径为,由题意,,从而可得,由椭圆的定义即可求解;(2)由题意,直线的斜率存在且不为0,设,,联立直线与椭圆方程,利用韦达定理及点为线段的中点,可得,利用弦长公式求出及到直线AB的距离即可得的面积.【小问1详解】解:圆的圆心,半径,圆的圆心,半径,设圆的半径为,由题意,,所以,由椭圆的定义可知,动圆圆心的轨迹是以,为焦点,长轴长为的椭圆,则,所以,所以动圆圆心的轨迹的方程为;【小问2详解】解:由题意,直线的斜率存在且不为0,设,,由,可得,所以①,②,且,即,因为的面积是面积的一半,所以点为线段的中点,所以,即③,联立①②③可得,所以,因为到直线AB的距离,,所以,所以当时,,当时,.所以的面积为或.20、(1);(2).【解析】(1)由椭圆离心率的性质及一元二次方程的根可得,再由椭圆参数关系、已知三角形面积求椭圆参数,即可得椭圆方程.(2)设直线,联立椭圆方程并结合韦达定理求,进而可得,再根据求参数t,可得,结合椭圆的对称性求,即可求结果.【小问1详解】由的根为,所以椭圆的离心率,依题意,,解得,即椭圆的方程为;【小问2详解】设直线,联立,消去得,由韦达定理得:,所以,所以,所以椭圆的内接平行四边形面积.所以,解得或(舍去),所以,根据椭圆的对称性知:,故平行四边形的四个顶点的纵坐标的乘积为.21、(1);(2)面积的最小值为,此时直线的方程为.【解析】(1)由直线的斜率和倾斜角的关系可求得的值;(2)求出点、的坐标,根据已知条件求出的取值范围,求出的面积关于的表达式,利用基本不等式可求得面积的最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论