山东省日照市莒县一中2025届高二上数学期末考试模拟试题含解析_第1页
山东省日照市莒县一中2025届高二上数学期末考试模拟试题含解析_第2页
山东省日照市莒县一中2025届高二上数学期末考试模拟试题含解析_第3页
山东省日照市莒县一中2025届高二上数学期末考试模拟试题含解析_第4页
山东省日照市莒县一中2025届高二上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省日照市莒县一中2025届高二上数学期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设双曲线的实轴长为8,一条渐近线为,则双曲线的方程为()A. B.C. D.2.有6本不同的书,按下列方式进行分配,其中分配种数正确的是()A.分给甲、乙、丙三人,每人各2本,有15种分法;B.分给甲、乙、丙三人中,一人4本,另两人各1本,有180种分法;C.分给甲乙每人各2本,分给丙丁每人各1本,共有90种分法;D.分给甲乙丙丁四人,有两人各2本,另两人各1本,有1080种分法;3.在棱长为1的正方体中,是线段上一个动点,则下列结论正确的有()A.不存在点使得异面直线与所成角为90°B.存在点使得异面直线与所成角为45°C.存在点使得二面角的平面角为45°D.当时,平面截正方体所得的截面面积为4.在正方体中中,,若点P在侧面(不含边界)内运动,,且点P到底面的距离为3,则异面直线与所成角的余弦值是()A. B.C. D.5.已知数列满足,,则的最小值为()A. B.C. D.6.已知直线m经过,两点,则直线m的斜率为()A.-2 B.C. D.27.某家大型超市近10天的日客流量(单位:千人次)分别为:2.5、2.8、4.4、3.6.下列图形中不利于描述这些数据的是()A.散点图 B.条形图C.茎叶图 D.扇形图8.已知点是抛物线上的动点,过点作圆的切线,切点为,则的最小值为()A. B.C. D.9.已知定义在区间上的函数,,若以上两函数的图像有公共点,且在公共点处切线相同,则m的值为()A.2 B.5C.1 D.010.已知,若,则()A. B.C. D.11.已知数列中,前项和为,且点在直线上,则=A. B.C. D.12.已知,满足,则的最小值为()A.5 B.-3C.-5 D.-9二、填空题:本题共4小题,每小题5分,共20分。13.已知,,且,则的值是_________.14.已知函数(1)求函数的最小正周期和单调递增区间;(2)在锐角三角形中,角,,所对的边分别为,,,若,,,求的面积15.已知曲线在点处的切线方程是,则的值为______16.若函数恰有两个极值点,则k的取值范围是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知各项为正数的等比数列中,,.(1)求数列的通项公式;(2)设,求数列的前n项和.18.(12分)某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,出现故障时需1名工人进行维修,且每台机器是否出现故障是相互独立的,每台机器出现故障的概率为(1)若出现故障的机器台数为X,求X的分布列;(2)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障时能及时维修,都产生5万元的利润,否则将不产生利润.若该厂在雇佣维修工人时,要保证在任何时刻多台机器同时出现故障能及时进行维修的概率不小于90%,雇佣几名工人使该厂每月获利最大?19.(12分)已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要条件,求m的取值范围20.(12分)立德中学举行冬令营活动期间,对位参加活动的学生进行了文化和体能测试,满分为150分,其测试成绩都在90分和150分之间,成绩在认定为“一般”,成绩在认定为“良好”,成绩在认定为“优秀”.成绩统计人数如下表:体能文化一般良好优秀一般0良好3优秀2例如,表中体能成绩良好且文化成绩一般的学生有2人(1)若从这位参加测试的学生中随机抽取一位,抽到文化或体能优秀的学生概率为.求,的值;(2)在(1)的情况下,从体能成绩优秀的学生中,随机抽取2人,求至少有一个人文化的成绩为优秀的概率;(3)若让使参加体能测试的成绩方差最小,写出的值.(直接写出答案)21.(12分)已知:,:.(1)当时,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.22.(10分)已知函数.其中e为然对数的底数(1)若,求函数的单调区间;(2)若,讨论函数零点个数

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】双曲线的实轴长为,渐近线方程为,代入解析式即可得到结果.【详解】双曲线的实轴长为8,即,,渐近线方程为,进而得到双曲线方程为.故选:D.2、D【解析】根据题意,分别按照选项说法列式计算验证即可做出判断.【详解】选项A,6本不同的书分给甲、乙、丙三人,每人各2本,有种分配方法,故该选项错误;选项B,6本不同的书分给甲、乙、丙三人,一人4本,另两人各1本,先将6本书分成4-1-1的3组,再将三组分给甲乙丙三人,有种分配方法,故该选项错误;选项C,6本不同的书分给甲乙每人各2本,有种方法,其余分给丙丁每人各1本,有种方法,所以不同的分配方法有种,故该选项错误;选项D,先将6本书分为2-2-1-14组,再将4组分给甲乙丙丁4人,有种方法,故该选项正确.故选:D.3、D【解析】由正方体的性质可将异面直线与所成的角可转化为直线与所成角,而当为的中点时,可得,可判断A;与或重合时,直线与所成的角最小可判断B;当与重合时,二面角的平面角最小,通过计算可判断C;过作,交于,交于点,由题意可得四边形即为平面截正方体所得的截面,且四边形是等腰梯形,然后利用已知数据计算即可判断D.【详解】异面直线与所成的角可转化为直线与所成角,当为中点时,,此时与所成的角为90°,所以A错误;当与或重合时,直线与所成角最小,为60°,所以B错误;当与重合时,二面角的平面角最小,,所以,所以C错误;对于D,过作,交于,交于点,因为,所以、分别是、的中点,又,所以,四边形即为平面截正方体所得的截面,因为,且,所以四边形是等腰梯形,作交于点,所以,,所以梯形的面积为,所以D正确.故选:D.4、A【解析】如图建立空间直角坐标系,先由,且点P到底面的距离为3,确定点P的位置,然后利用空间向量求解即可【详解】如图,以为坐标原点,以所在的直线分别为轴,建立空间直角坐标系,则,所以,所以,所以,因为,所以平面,因为平面平面,点P在侧面(不含边界)内运动,,所以,因为点P到底面的距离为3,所以,所以,因为,所以异面直线与所成角的余弦值为,故选:A5、C【解析】采用叠加法求出,由可得,结合对勾函数性质分析在或6取到最小值,代值运算即可求解.【详解】因为,所以,,,,式相加可得,所以,,当且仅当取到,但,,所以时,当时,,,所以的最小值为.故选:C6、A【解析】根据斜率公式求得正确答案.【详解】直线的斜率为:.故选:A7、A【解析】根据数据的特征以及各统计图表的特征分析即可;【详解】解:茎叶图、条形图、扇形图均能将数据描述出来,并且能够体现出数据的变化趋势;散点图表示因变量随自变量而变化的大致趋势,故用来描述该超市近10天的日客流量不是很合适;故选:A8、C【解析】分析可知圆的圆心为抛物线的焦点,可求出的最小值,再利用勾股定理可求得的最小值.【详解】设点的坐标为,有,由圆的圆心坐标为,是抛物线的焦点坐标,有,由圆的几何性质可得,又由,可得的最小值为故选:C.9、C【解析】设两曲线与公共点为,分别求得函数的导数,根据两函数的图像有公共点,且在公共点处切线相同,列出等式,求得公共点的坐标,代入函数,即可求解.【详解】根据题意,设两曲线与公共点为,其中,由,可得,则切线的斜率为,由,可得,则切线斜率为,因为两函数的图像有公共点,且在公共点处切线相同,所以,解得或(舍去),又由,即公共点的坐标为,将点代入,可得.故选:C.10、B【解析】先求出的坐标,然后由可得,再根据向量数量积的坐标运算求解即可.【详解】因为,,所以,因为,所以,即,解得.故选:B11、C【解析】点在一次函数上的图象上,,数列为等差数列,其中首项为,公差为,,数列的前项和,,故选C考点:1、等差数列;2、数列求和12、D【解析】作出可行域,作出目标函数对应的直线,平移该直线可得最优解【详解】解:作出可行域,如图内部(含边界),作直线,在中,,当直线向下平移时,增大,因此把直线向上平移,当直线过点时,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据空间向量可得,结合计算即可.【详解】由题意知,,所以,解得.故答案:314、(1)最小正周期,,;(2)【解析】(1)根据降幂公式、辅助角公式化简函数的解析式,再利用正弦型函数的最小正周期公式、单调性进行求解即可;(2)根据特殊角的三角函数值,结合三角形面积公式进行求解即可.【详解】(1),所以的最小正周期令,,解得,,所以的单调递增区间为,(2)因为,所以,即,又,所以,所以或,或,当时,,不符合题意,舍去;当时,,符合题意,所以,,,,此时为等腰三角形,所以,所以,即的面积为15、11【解析】根据给定条件结合导数的几何意义直接计算作答.【详解】因曲线在点处的切线方程是,则,,所以.故答案为:1116、【解析】求导得有两个极值点等价于函数有一个不等于1的零点,分离参数得,令,利用导数研究的单调性并作出的图象,根据图象即可得出k的取值范围【详解】函数的定义域为,,令,解得或,若函数有2个极值点,则函数与图象在上恰有1个横坐标不为1的交点,而,令,令或,故在和上单调递减,在上单调递增,又,如图所示,由图可得.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据条件求出即可;(2),然后利用等差数列的求和公式求出答案即可.【详解】(1)且,,(2)18、(1)答案见解析(2)雇佣3名【解析】(1)设出现故障的机器台数为X,由题意知,即可由二项分布求解;(2)设该厂雇佣n名工人,n可取0、1、2、3、4,先求出保证在任何时刻多台机器同时出现故障能及时进行维修的概率不小于90%需要至少3人,再分别计算3人,4人时的获利即可得解.【小问1详解】每台机器运行是否出现故障看作一次实验,在一次试验中,机器出现故障的概率为,4台机器相当于4次独立试验设出现故障的机器台数为X,则,,,,,,则X的分布列为:X01234P【小问2详解】设该厂雇佣n名工人,n可取0、1、2、3、4,设“在任何时刻多台机器同时出现故障能及时进行维修”的概率为,则:n01234P1∵,∴至少要3名工人,才能保证在任何时刻多台机器同时出现故障时能及时进行维修的概率不小于90%当该厂雇佣3名工人时,设该厂获利为Y万元,则Y的所有可能取值为17,12,,,∴Y的分布列为:Y1712P∴,∴该厂获利的均值为16.9万元当该厂雇佣4名工人时,4台机器在任何时刻同时出现故障时能及时进行维修的概率为100%,该厂获利的均值为万元∴若该厂要保证在任何时刻多台机器同时出现故障能及时进行维修的概率不小于90%时,雇佣3名工人使该厂每月获利最大19、.【解析】由x2﹣8x﹣20≤0,解得﹣2≤x≤10.根据非空集合S={x|1﹣m≤x≤1+m}.又x∈P是x∈S的必要条件,可得,1﹣m≤1+m,解得m范围【详解】由x2﹣8x﹣20≤0,解得﹣2≤x≤10.∴P=[﹣2,10]非空集合S={x|1﹣m≤x≤1+m}.又x∈P是x∈S的必要条件,∴,1﹣m≤1+m,解得0≤m≤3∴m的取值范围是[0,3]【点睛】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题20、(1),;(2);(3).【解析】(1)由题设可得求参数a,结合表格数据及已知总学生人数求参数b.(2)应用列举法求古典概型的概率.(3)应用表格数据及方差公式可得且,即可确定成绩方差最小对应的值.【小问1详解】设事件:从位学生中随机抽取一位,抽到文化或体能优秀的学生由题意知,体能或文化优秀的学生共有人,则,解得所以;【小问2详解】体能成绩为优秀的学生共有5人,在这5人中,文化成绩一般的人记为;文化成绩良好的人记为;文化成绩优秀的人记为从文化成绩优秀的学生中,随机抽取2人的样本空间,设事件:至少有一个人文化的成绩为优秀,,所以,体能成绩优秀的学生中,随机抽取2人,至少有一个人文化成绩为优秀的概率是;【小问3详解】由题设知:体能测试成绩,{一般,良好

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论