版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古鄂尔多斯市康巴什区鄂尔多斯一中2025届高二数学第一学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.展开式的第项为()A. B.C. D.2.若直线的倾斜角为120°,则直线的斜率为()A. B.C. D.3.已知A,B,C是椭圆M:上三点,且A(A在第一象限,B关于原点对称,,过A作x轴的垂线交椭圆M于点D,交BC于点E,若直线AC与BC的斜率之积为,则()A.椭圆M的离心率为 B.椭圆M的离心率为C. D.4.已知数列中,且满足,则()A.2 B.﹣1C. D.5.已知向量,,且与互相垂直,则k的值是().A.1 B.C. D.6.已知的三个顶点是,,,则边上的高所在的直线方程为()A. B.C. D.7.已知数列是等比数列,,是函数的两个不同零点,则等于()A. B.C.14 D.168.在四面体中,为的中点,为棱上的点,且,则()A. B.C. D.9.已知数列为等比数列,,则的值为()A. B.C. D.210.已知、,直线,,且,则的最小值为()A. B.C. D.11.俗话说“好货不便宜,便宜没好货”,依此判断,“不便宜”是“好货”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件12.如图,在四棱锥中,平面,,,则点到直线的距离为()A. B.C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的右焦点到C的渐近线的距离为,则C渐近线方程为______14.已知圆和直线.(1)求直线l所经过的定点的坐标,并判断直线与圆的位置关系;(2)求当k取什么值,直线被圆截得的弦最短,并求这条最短弦的长.15.六面体的所有棱长都为2,底面ABCD是正方形,AC与BD的交点是O,若,则___________.16.如图,按照以下规律排列的数阵中,第i行从左向右第j个数记为,如,,则______;令则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)曲线与曲线在第一象限的交点为.曲线是()和()组成的封闭图形.曲线与轴的左交点为、右交点为.(1)设曲线与曲线具有相同的一个焦点,求线段的方程;(2)在(1)的条件下,曲线上存在多少个点,使得,请说明理由.(3)设过原点的直线与以为圆心的圆相切,其中圆的半径小于1,切点为.直线与曲线在第一象限的两个交点为..当对任意直线恒成立,求的值.18.(12分)设函数(1)若曲线在点处的切线方程为,求;(2)求函数的单调区间19.(12分)已知集合,(1)若,求m的取值范围;(2)若“x∈B”是“x∈A”的充分不必要条件,求m的取值范围20.(12分)已知数列的首项,其前n项和为,且满足.(1)求数列的通项公式;(2)设,数列的前n项和为,且,求n.21.(12分)已知两个定点,,动点满足,设动点的轨迹为曲线,直线:(1)求曲线的轨迹方程;(2)若与曲线交于不同的、两点,且(为坐标原点),求直线的斜率;22.(10分)已知椭圆的离心率为,且过点.(1)求椭圆的方程;(2)四边形的顶点在椭圆上,且对角线,均过坐标原点,若,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由展开式的通项公式求解即可【详解】因为,所以展开式的第项为,故选:B2、B【解析】求得倾斜角的正切值即得【详解】k=tan120°=.故选:B3、C【解析】设出点,,的坐标,将点,分别代入椭圆方程两式作差,构造直线和的斜率之积,得到,即可求椭圆的离心率,利用,求出,可知点在轴上,且为的中点,则.【详解】设,,,则,,,两式相减并化简得,即,则,则AB错误;∵,,∴,又∵,∴,即,解得,则点在轴上,且为的中点即,则正确.故选:C.4、C【解析】首先根据数列的递推公式求出数列的前几项,即可得到数列的周期性,即可得解;【详解】解:因为且,所以,,,所以是周期为的周期数列,所以,故选:C5、D【解析】利用向量的数量积为0可求的值.【详解】因与互相垂直,故,故即,故.故选:D.6、B【解析】求出边上的高所在的直线的斜率,再利用点斜式方程可得答案.【详解】因为,所以边上的高所在的直线的斜率为,所以边上的高所在的直线方程为,即.故选:B.7、C【解析】根据等比数列的性质求得正确答案.【详解】是函数的两个不同零点,所以,由于数列是等比数列,所以.故选:C8、A【解析】利用空间向量加法运算,减法运算,数乘运算即可得到答案.【详解】如图故选:A9、B【解析】根据等比数列的性质计算.【详解】由等比数列的性质可知,且等比数列奇数项的符号相同,所以,即.故选:B10、D【解析】先由,可得,变形得,所以,化简后利用基本不等式求解即可【详解】因为、,直线,,且,所以,即,所以,所以,所以,当且仅当,即时,取等号,所以的最小值为,故选:D11、A【解析】将“好货”与“不便宜”进行相互推理即可求得答案.【详解】根据题意,“好货”一定“不便宜”,但是“不便宜”不一定是“好货”,所以“不便宜”是“好货”的必要不充分条件.故选:A.12、A【解析】如图,以为坐标原点,建立空间直角坐标系,然后利用空间向量求解即可【详解】因为平面,平面,平面,所以,,因为所以如图,以为坐标原点,建立空间直角坐标系,则,,,,,即.在上的投影向量的长度为,故点到直线的距离为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据给定条件求出双曲线渐近线,再用点到直线的距离公式计算作答【详解】双曲线的渐近线为:,即,依题意,,即,解得,所以C渐近线方程为.故答案为:14、(1)直线过定点P(4,3),直线和圆总有两个不同交点(2)k=1,【解析】(1)把直线方程化为点斜式方程即可;(2)由圆的性质知,当直线与PC垂直时,弦长最短.【小问1详解】直线方程可化为,则直线过定点P(4,3),又圆C标准方程为,圆心为,半径为,而,所以点P在圆内,所以不论k取何值,直线和圆总有两个不同交点.【小问2详解】由圆的性质知,当直线与PC垂直时,弦长最短.,所以k=1时弦长最短.弦长为.15、【解析】结合空间向量运算求得.【详解】,.所以.故答案为:16、①.55②.【解析】令易知是首项为,公差为1的等差数列,写出通项公式,再应用累加法求及通项公式,结合求通项公式,进而可得,最后两次应用错位相减法求即可.【详解】由题设知:令,则是首项为,公差为1的等差数列,故,所以,即,由上可得:,则,而,所以,则,所以,,所以,令,则,所以,故,综上,,则.故答案为:,.【点睛】关键点点睛:通过图总结规律,易知是等差数列,应用累加法求,再由求通项公式,最后应用错位相减法求前n项和.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或;(2)一共2个,理由见解析;(3)答案见解析.【解析】(1)先求曲线的焦点,再求点的坐标,分焦点为左焦点或右焦点,求线段的方程;(2)分点在双曲线或是椭圆的曲线上,结合条件,说明点的个数;(3)首先设出直线和圆的方程,利用直线与圆相切,以及直线与曲线相交,分别表示,并计算得到的值.【详解】(1)两个曲线相同的焦点,,解得:,即双曲线方程是,椭圆方程是,焦点坐标是,联立两个曲线,得,,即,当焦点是右焦点时,线段的方程当焦点时左焦点时,,,线段的方程(2),假设点在曲线上单调递增∴所以点不可能在曲线上所以点只可能在曲线上,根据得可以得到当左焦点,,同样这样的使得不存在所以这样的点一共2个(3)设直线方程,圆方程为直线与圆相切,所以,,根据得到补充说明:由于直线的曲线有两个交点,受参数的影响,蕴含着如下关系,∵,当,存在,否则不存在这里可以不需讨论,因为题目前假定直线与曲线有两个交点的大前提,当共焦点时存在不存在.【点睛】关键点点睛:本题考查直线与椭圆和双曲线相交的综合应用,本题的关键是曲线由椭圆和双曲线构成,所以研究曲线上的点时,需分两种情况研究问题.18、(1)(2)答案见解析【解析】(1)求出,建立方程关系,即可求出结论;(2)对分类讨论,求出的单调区间.【小问1详解】由于切点在切线上,所以,函数通过点又,根据导数几何意义,;【小问2详解】由可知当时,则;当时,则;当时,的单调递减区间为,单调递增区间为当时,单调递增区间为,单调递减区间为.19、(1)(2)【解析】(1)先求出,由得到,得到不等式组,求出m的取值范围;(2)根据充分不必要条件得到是的真子集,分与两种情况进行求解,求得m的取值范围.【小问1详解】,解得:,故,因为,所以,故,解得:,所以m的取值范围是.【小问2详解】若“x∈B”是“x∈A”的充分不必要条件,则是的真子集,当时,,解得:,当时,需要满足:或,解得:综上:m取值范围是20、(1)(2)【解析】(1)由条件得,则利用等差数列的定义可得答案;(2)利用裂项求和求出,再根据可求出n.【小问1详解】由得,从而数列是以1为首项,1为公差的等差数列,所以;【小问2详解】由(1)得,由得又,所以.21、(1);(2)【解析】(1)设点的坐标为,由,结合两点间的距离公式,列出式子,可求出轨迹方程;(2)易知,且,可求出到直线的距离,结合点到直线的距离为,可求出直线的斜率【详解】(1)设点的坐标为,由,可得,整理得,所以所求曲线的轨迹方程为(2)依题意,,且,在△中,,取的中点,连结,则,所以,即点到直线:的距离为,解得,所以所求直线斜率为【点睛】本题考查轨迹方程,考查直线的斜率,考查两点间的距离公式、点到直线的距离公
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 孕妇学校课外活动
- 《通山隆鼎丽都》课件
- 2024年四川省宜宾市中考化学真题【附答案】
- 兴奋状态的护理
- 《公众聚集场所消防》课件
- 《听听那冷雨大学语》课件
- 包皮手术科普
- 清平乐村居获奖课件
- 小儿尖足推拿治疗
- 大咯血应急预案的护理
- 2024年度Logo设计及品牌形象重塑合同
- 中小学学校国家智慧教育云平台应用项目实施方案
- 2024-2025学年广东省佛山市S6高质量发展联盟高二上学期期中联考数学试卷(含答案)
- 2024-2030年铝型材行业市场深度调研及前景趋势与投资战略研究报告
- 2024-2030年辣椒种植行业市场深度分析及发展策略研究报告
- 通信工程施工方案
- 初中英语研修方案
- 化工厂拆除施工方案
- 海南自贸港优化营商环境条例7大亮点解读课件
- 中国邮政储蓄银行2024年下半年社会招聘高频难、易错点500题模拟试题附带答案详解
- 《中华人民共和国道路交通安全法实施条例》知识专题培训
评论
0/150
提交评论