




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省汕头市潮阳区高中2025届高二数学第一学期期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在正项等比数列中,和为方程的两根,则等于()A.8 B.10C.16 D.322.已知长方体的底面ABCD是边长为4的正方形,长方体的高为,则与对角面夹角的正弦值等于()A. B.C. D.3.现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤,若该金锤从头到尾,每一尺的重量构成等差数列,该金锤共重()斤A.6 B.7C.9 D.154.圆心在x轴上且过点的圆与y轴相切,则该圆的方程是()A. B.C. D.5.直线的倾斜角为()A.30° B.60°C.90° D.120°6.若双曲线的渐近线方程为,则的值为()A.2 B.3C.4 D.67.已知点在抛物线的准线上,则该抛物线的焦点坐标是()A. B.C. D.8.在如图所示的茎叶图中,若甲组数据的众数为16,则乙组数据的平均数为()A.12 B.10C.8 D.69.命题任意圆的内接四边形是矩形,则为()A.每一个圆的内接四边形是矩形B.有的圆的内接四边形不是矩形C.所有圆的内接四边形不是矩形D.存在一个圆的内接四边形是矩形10.设,是椭圆C:的左、右焦点,若椭圆C上存在一点P,使得,则椭圆C的离心率e的取值范围为()A. B.C. D.11.设等差数列前项和为,若是方程的两根,则()A.32 B.30C.28 D.2612.若在1和16中间插入3个数,使这5个数成等比数列,则公比为()A. B.2C. D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列公差不为0,且,,等比数列,则_________.14.椭圆x2+=1上的点到直线x+y-4=0的距离的最小值为_________.15.已知直线与之间的距离为,则__________16.在等比数列中,,,若数列满足,则数列的前项和为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆关于直线对称,且圆心C在轴上.(1)求圆C的方程;(2)直线与圆C交于A、B两点,若为等腰直角三角形,求直线的方程.18.(12分)已知,两地的距离是.根据交通法规,,两地之间的公路车速(单位:)应满足.假设油价是7元/,以的速度行驶时,汽车的耗油率为,当车速为时,汽车每小时耗油,司机每小时的工资是91元.(1)求的值;(2)如果不考虑其他费用,当车速是多少时,这次行车的总费用最低?19.(12分)如图,在四棱锥中,底面ABCD为直角梯形,,,底面ABCD,E为BP的中点,,(1)证明:平面PAD;(2)求平面EAC与平面PAC夹角的余弦值20.(12分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB⊥AD,BC//AD,AD=2BC=2PA=2AB=2,E,F,G分别为线段AD,DC,PB的中点.(1)证明:直线PF//平面ACG;(2)求直线PD与平面ACG所成角的正弦值.21.(12分)已知函数f(x)=x3+ax2+2,x=2是f(x)的一个极值点.(1)求实数a的值;(2)求f(x)在区间(-1,4]上的最大值和最小值.22.(10分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率)(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据和为方程两根,得到,然后再利用等比数列的性质求解.【详解】因为和为方程的两根,所以,又因为数列是等比数列,所以,故选:C2、C【解析】建立空间直角坐标系,结合空间向量的夹角坐标公式即可求出线面角的正弦值.【详解】连接,建立如图所示的空间直角坐标系∵底面是边长为4的正方形,,∴,,,因为,,且,所以平面,∴,平面的法向量,∴与对角面所成角的正弦值为故选:C.3、D【解析】设该等差数列为,其公差为,根据题意和等差数列的性质可得,进而求出结果.【详解】设该等差数列为,其公差为,由题意知,,由,解得,所以.故选:D4、A【解析】根据题意设出圆的方程,列式即可求出【详解】依题可设圆的方程为,所以,解得即圆的方程是故选:A5、B【解析】根据给定方程求出直线斜率,再利用斜率的定义列式计算得解.【详解】直线的斜率,设其倾斜角为,显然,则有,解得,直线的倾斜角为.故选:B6、A【解析】根据双曲线方程确定焦点位置,再根据渐近线方程为求解.【详解】因为双曲线所以焦点在x轴上,又因为渐近线方程为,所以,所以.故选:A【点睛】本题主要考查双曲线的几何性质,还考查了理解辨析的能力,属于基础题.7、C【解析】首先表示出抛物线的准线,根据点在抛物线的准线上,即可求出参数,即可求出抛物线的焦点.【详解】解:抛物线的准线为因为在抛物线的准线上故其焦点为故选:【点睛】本题考查抛物线的简单几何性质,属于基础题.8、A【解析】根据众数的概念,求得的值,再根据平均数的计算公式,即可求解.【详解】由题意,甲组数据的众数为16,得,所以乙组数据的平均数为故选:A.9、B【解析】全称命题的否定特称命题,任意改为存在,把结论否定.【详解】全称量词命题的否定是特称命题,需要将全称量词换为存在量词,答案A,C不符合题意,同时对结论进行否定,所以:有的圆的内接四边形不是矩形,故选:B.10、B【解析】先设,根据P在椭圆上得到,由,得到的范围,即为离心率的范围.【详解】由椭圆的方程可得,,设,由,则,即,由P在椭圆上可得,所以,代入可得所以,因为,所以整理可得:,消去得:所以,即所以.故选:B11、A【解析】根据给定条件利用韦达定理结合等差数列性质计算作答.【详解】因是方程的两根,则又是等差数列的前项和,于是得,所以.故选:A12、A【解析】根据等比数列的通项得:,从而可求出.【详解】解:成等比数列,∴根据等比数列的通项得:,,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设等差数列的公差为,由,,等比数列,可得,则的值可求【详解】解:设等差数列的公差为,,,等比数列,,则,得,故答案为:14、【解析】设与直线x+y-4=0平行的直线方程为,求出即得解.【详解】解:设与直线x+y-4=0平行的直线方程为,所以,代入椭圆方程得,令或.当时,平行线间的距离为;当时,平行线间的距离为.所以最小距离为.故答案为:.15、或##或【解析】利用平行直线间距离公式构造方程求解即可.【详解】方程可化为:,由平行直线间距离公式得:,解得:或.故答案为:或.16、【解析】求出等比数列的通项公式,可得出的通项公式,推导出数列为等差数列,利用等差数列的求和公式即可得解.【详解】设等比数列的公比为,则,则,所以,,则,所以,数列为等差数列,故数列的前项和为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)根据题意得到等量关系,求出,,进而求出圆的方程;(2)结合第一问求出的圆心和半径,及题干条件得到圆心到直线的距离为,列出方程,求出的值,进而得到直线方程【小问1详解】由题意得:直线过圆心,即,且,解得:,,所以圆C的方程为;【小问2详解】的圆心为,半径为2,由题意得:,圆心到直线的距离为,即,解得:或,所以直线的方程为:或.18、(1);(2).【解析】(1)根据题中给出的车速和油耗之间的关系式,结合已知条件,待定系数即可;(2)根据题意求得以行驶所用时间,构造费用关于的函数,利用导数研究其单调性和最值,即可求得结果.【小问1详解】因为汽车以的速度行驶时,汽车的耗油率为,又当时,,解得.【小问2详解】若汽车的行驶速度为,则从地到地所需用时,则这次行车的总费用,则,令,解得,则当,,单调递减,即.故时,该次行车总费用最低.19、(1)证明见解析(2)【解析】(1)通过作辅助线,构造平行四边形,在平面PAD找到线并证明,根据线面平行的判定定理即可证明;(2)建立空间直角坐标系,求出相应点的坐标,进而求得相关的向量坐标,求出平面EAC与平面PAC的法向量,根据向量的夹角公式求得答案.【小问1详解】证明:取PA的中点F,由E为PB的中点,则,,而,,所以且,则四边形CDFE为平行四边形,所以,又平面PAD,平面PAD,所以平面PAD【小问2详解】∵平面ABCD,,∴AP,AB,AD两两垂直,以A为原点,,,向量方向分别为x轴,y轴,z轴建立如图所示空间直角坐标系,各点坐标如下:,,,,,设平面APC的法向量为,由,,有,取,则,,即,设平面EAC的法向量为,由,,有,取,则,,即,所以,由原图可知平面EAC与平面PAC夹角为锐角,所以平面EAC与平面PAC夹角的余弦值为20、(1)证明见解析(2)【解析】(1)连接EC,设EB与AC相交于点O,结合已知条件利用线面平行的判定定理可证得OG//平面PEF,再由三角形中位线定理结合线面垂直的判定定理可得AC//平面PEF,从而由面面垂直的判定可得平面PEF//平面GAC,进而可证得结论,(2)由已知可证得PA、AB、AD两两互相垂直,以A为原点,AB,AD,AP所在的直线为x轴,y轴,z轴,建立空间直角坐标系,利用空间向量求解即可【小问1详解】证明:连接EC,设EB与AC相交于点O,如图,因为BC//AD,且,AB⊥AD,所以四边形ABCE为矩形,所以O为EB的中点,又因为G为PB的中点,所以OG为△PBE的中位线,即OG∥PE,因为OG平面PEF,PE⊂平面PEF,所以OG//平面PEF,因为E,F分别为线段AD,DC的中点,所以EF//AC,因为AC平面PEF,EF⊂平面PEF,所以AC//平面PEF,因为OG⊂平面GAC,AC⊂平面GAC,AC∩OG=O,所以平面PEF//平面GAC,因为PF⊂平面PEF,所以PF//平面GAC.【小问2详解】因为PA⊥底面ABCD,AB⊂平面ABCD,AD⊂平面ABCD,所以PA⊥AB,PA⊥AD,因为AB⊥AD,所以PA、AB、AD两两互相垂直,以A为原点,AB,AD,AP所在的直线为x轴,y轴,z轴,建立空间直角坐标系,如图所示:则A(0,0,0),,C(1,1,0),D(0,2,0),P(0,0,1),所以,设平面ACG的法向量为,则,所以,令x=1,可得y=﹣1,z=﹣1,所以,设直线PD与平面ACG所成角为θ,则,所以直线PD与平面ACG所成角的正弦值为.21、(1);(2)最大值为18,最小值为.【解析】(1)解方程即得解;(2)利用导数求出函数的单调区间分析即得解.【小问1详解】解:因为,所以,因为在处有极值,所以,即,所以.经检验,当时,符合题意.所以.【小问2详解】解:由(1)可知,所以,令,得,当时,由得,;由得,或.所以函数在上递增,在上递减,在上递增,又.所以的最小值为,又,所以的最大值为,所以在的最大值为18,最小值为.22、(1)V(r)=(300r﹣4r3)(0,5)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 空调制冷剂的选择与应用考核试卷
- 花画工艺品的旅游纪念品开发考核试卷
- 陶瓷企业的品牌形象塑造与社会责任考核试卷
- 金融行业利率市场化与汇率形成考核试卷
- 麻醉药的选择
- 损伤控制外科
- 呼吸系统疾病病情观察
- 呼吸功能衰竭病症概述
- 外科值班处理规范与流程
- SDH-IN-24-生命科学试剂-MCE
- 桃花源记的试题及答案
- 工厂计件奖罚管理制度
- 2024年陕西省西安市初中学业水平模拟考试地理试卷
- 2025黑龙江省交通投资集团限公司招聘348人易考易错模拟试题(共500题)试卷后附参考答案
- cpsm考试试题及答案
- 汇川技术高压变频器技术标准教材
- 2025年玻璃钢围网渔船项目市场调查研究报告
- 江苏省南京2022年中考历史试卷(解析版)
- 公司用人培养协议书
- GB/T 45593-2025精细陶瓷微磨损试验测定涂层的耐磨性
- 2025年中国啤酒专用冷酶剂市场调查研究报告
评论
0/150
提交评论