版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届新疆昌吉回族自治州玛纳斯县第一中学高一数学第一学期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知为定义在上的偶函数,,且当时,单调递增,则不等式的解集为()A. B.C. D.2.命题“,”的否定是()A., B.,C., D.,3.函数y=ln(1﹣x)的图象大致为()A. B.C. D.4.下列集合与集合相等的是()A. B.C. D.5.已知圆,圆,则两圆的位置关系为A.相离 B.相外切C.相交 D.相内切6.已知函数则()A.- B.2C.4 D.117.已知函数,函数有三个零点,则取值范围是A. B.C. D.8.一几何体的直观图如右图,下列给出的四个俯视图中正确的是()A. B.C. D.9.一个几何体的三视图如图所示,则该几何体的表面积为A. B.C. D.10.若命题“,”是假命题,则实数的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则_____.12.已知角的顶点为坐标原点,始边为x轴的正半轴,若是角终边上一点,且,则y=_______.13.已知函数,则____14.在三棱锥中,,,,则三棱锥的外接球的表面积为________.15.若函数在区间[2,3]上的最大值比最小值大,则__________.16.如图,圆锥的底面圆直径AB为2,母线长SA为4,若小虫P从点A开始绕着圆锥表面爬行一圈到SA的中点C,则小虫爬行的最短距离为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.对于函数(1)判断的单调性,并用定义法证明;(2)是否存在实数a使函数为奇函数?若存在,求出a的值;若不存在,说明理由18.设全集为,或,.(1)求,;(2)求.19.用定义法证明函数在上单调递增20.已知全集,集合,集合(1)求集合及;(2)若集合,且,求实数的取值范围21.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为的水车,当水车上水斗A从水中浮现时开始计算时间,点A沿圆周按逆时针方向匀速旋转,且旋转一周用时60秒,经过秒后,水斗旋转到点,已知,设点的坐标为,其纵坐标满足(1)求函数的解析式;(2)当水车转动一圈时,求点到水面的距离不低于的持续时间
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据给定条件,探讨函数的性质,再把不等式等价转化,利用的性质求解作答.【详解】因为定义在上的偶函数,则,即是R上的偶函数,又在上单调递增,则在上单调递减,,即,因此,,平方整理得:,解得,所以原不等式的解集是.故选:B2、C【解析】利用全称量词的命题的否定解答即可.【详解】解:因为全称量词的命题的否定是存在量词的命题,命题“,”是全称量词的命题,所以其否定是“,”.故选:C3、C【解析】根据函数的定义域和特殊点,判断出正确选项.【详解】由,解得,也即函数的定义域为,由此排除A,B选项.当时,,由此排除D选项.所以正确的为C选项.故选:C【点睛】本小题主要考查函数图像识别,属于基础题.4、C【解析】根据各选项对于的集合的代表元素,一一判断即可;【详解】解:集合,表示含有两个元素、的集合,对于A:,表示含有一个点的集合,故不相等;对于B:,表示的是点集,故不相等;对于C:,表示方程的解集,因为的解为,或,所以对于D:,故不相等故选:C5、A【解析】利用半径之和与圆心距的关系可得正确的选项.【详解】圆,即,圆心为(0,3),半径为1,圆,即,圆心为(4,0),半径为3..所以两圆相离,故选:A.6、C【解析】根据分段函数的分段条件,先求得,进而求得的值,得到答案.【详解】由题意,函数,可得,所以.故选:C.【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的分段条件,代入准确运算是解答的关键,着重考查运算与求解能力.7、D【解析】根据题意做出函数在定义域内的图像,将函数零点转化成函数与函数图像交点问题,结合图形即可求解.【详解】解:根据题意画出函数的图象,如图所示:函数有三个零点,等价于函数与函数有三个交点,当直线位于直线与直线之间时,符合题意,由图象可知:,,所以,故选:D.【点睛】根据函数零点的情况求参数有三种常用方法:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.8、B【解析】通过几何体结合三视图的画图方法,判断选项即可【详解】解:几何体的俯视图,轮廓是矩形,几何体的上部的棱都是可见线段,所以C、D不正确;几何体的上部的棱与正视图方向垂直,所以A不正确,故选B【点睛】本题考查三视图的画法,几何体的结构特征是解题的关键9、D【解析】该几何体为半圆柱,底面为半径为1的半圆,高为2,因此表面积为,选D.10、A【解析】由题意知原命题为假命题,故命题的否定为真命题,再利用,即可得到答案.【详解】由题意可得“”是真命题,故或.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】利用诱导公式求出,再将所求值的式子弦化切,代值计算即得.【详解】因,所以.故答案为:3.12、-8【解析】答案:-8.解析:根据正弦值为负数,判断角在第三、四象限,再加上横坐标为正,断定该角为第四象限角.13、16、【解析】令,则,所以,故填.14、【解析】构造长方体,使得面上的对角线长分别为4,5,,则长方体的对角线长等于三棱锥P-ABC外接球的直径,即可求出三棱锥P-ABC外接球的表面积【详解】∵三棱锥P−ABC中,PA=BC=4,PB=AC=5,PC=AB=,∴构造长方体,使得面上的对角线长分别为4,5,,则长方体的对角线长等于三棱锥P−ABC外接球的直径.设长方体的棱长分别为x,y,z,则,∴三棱锥P−ABC外接球的直径为,∴三棱锥P−ABC外接球的表面积为.故答案为:26π.【点睛】本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.15、【解析】函数在上单调递增,∴解得:故答案为16、2.【解析】分析:要求小虫爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果详解:由题意知底面圆的直径AB=2,故底面周长等于2π.设圆锥的侧面展开后的扇形圆心角为n°,根据底面周长等于展开后扇形的弧长得2π=,解得n=90,所以展开图中∠PSC=90°,根据勾股定理求得PC=2,所以小虫爬行的最短距离为2.故答案为2点睛:圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决三、三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)在R上单调递增;(2)存在使得为奇函数.【解析】(1)利用函数单调性的定义证明;(2)利用函数奇偶性的定义求参数【小问1详解】证明:任取且,则又且,即在R上单调递增【小问2详解】若为R上为奇函数,则对任意的都有18、(1)或,(2)或【解析】(1)根据集合的交集和并集的定义即可求解;(2)先根据补集的定义求出,然后再由交集的定义即可求解.【小问1详解】解:因为或,,所以或,;【小问2详解】解:因为全集为,或,,所以或,所以或.19、详见解析【解析】根据题意,将函数的解析式变形有,设,由作差法分析可得结论详解】证明:,设,则,又由,则,,,则,则函数上单调递增【点睛】本题考查函数单调性的证明,注意定义法证明函数单调性的步骤,属于基础题.20、(1),;(2)【解析】(1)解一元一次不等式求集合A,再应用集合的交并补运算求及.(2)由集合的包含关系可得,结合已知即可得的取值范围【小问1详解】由得:,所以,则,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 诚信道歉保证书范本
- 课堂规则我遵守不调换座位保证
- 货物买卖合同总览
- 质量上乘货源供应保证
- 购销合同保修范本范例
- 购销合同签订中的合同履行保障
- 贷款协议取消样本
- 贷款合同签订注意事项
- 跨国技术服务合同
- 软件技术开发外包合同
- 2022年上海国际集团有限公司校园招聘笔试试题及答案解析
- 2022年山东省财金投资集团有限公司校园招聘笔试试题及答案解析
- 泌尿外科三甲工作汇报-课件
- 小学语文人教五年级上册第四单元古诗词中的家国情怀
- 目标管理实务教材课件
- 腹直肌分离康复(产后康复课件PPT)
- optimact540技术参考手册
- 中小学生冬季交通安全教育PPT模板
- 丙型肝炎病毒课件
- 2023届高三语文复习:山水田园类诗歌阅读专项练习
- (新版)血液透析专科理论考试题库(参考500题)
评论
0/150
提交评论