广西壮族自治区百色市广西田阳高中2025届高二上数学期末统考模拟试题含解析_第1页
广西壮族自治区百色市广西田阳高中2025届高二上数学期末统考模拟试题含解析_第2页
广西壮族自治区百色市广西田阳高中2025届高二上数学期末统考模拟试题含解析_第3页
广西壮族自治区百色市广西田阳高中2025届高二上数学期末统考模拟试题含解析_第4页
广西壮族自治区百色市广西田阳高中2025届高二上数学期末统考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西壮族自治区百色市广西田阳高中2025届高二上数学期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等比数列{}中,,,则=()A.9 B.12C.±9 D.±122.焦点坐标为,(0,4),且长半轴的椭圆方程为()A. B.C. D.3.如图,已知四棱锥,底面ABCD是边长为4的菱形,且,E为AD的中点,,则异面直线PC与BE所成角的余弦值为()A. B.C. D.4.经过点作圆的弦,使点为弦的中点,则弦所在直线的方程为A. B.C. D.5.已知平面直角坐标系内一动点P,满足圆上存在一点Q使得,则所有满足条件的点P构成图形的面积为()A. B.C. D.6.在棱长为2的正方体中,为线段的中点,则点到直线的距离为()A. B.C. D.7.下列命题中的假命题是()A.,B.存在四边相等的四边形不是正方形C.“存在实数,使”的否定是“不存在实数,使”D.若且,则,至少有一个大于8.数列满足,对任意,都有,则()A. B.C. D.9.已知一质点的运动方程为,其中的单位为米,的单位为秒,则第1秒末的瞬时速度为()A. B.C. D.10.直线的倾斜角的大小为()A. B.C. D.11.圆心在直线上,且过点,并与直线相切的圆的方程为()A. B.C. D.12.已知函数在处取得极小值,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设,则动点P的轨迹方程为________14.已知F1,F2是双曲线C:﹣y2=1(a>0)的左、右焦点,点P是双曲线C上的任意一点(不是顶点),过F1作∠F1PF2的角平分线的垂线,垂足为H,O是坐标原点.若|F1F2|=6|OH|,则双曲线C的方程为____15.过抛物线的焦点作直线交抛物线于两点,为坐标原点,记直线的斜率分别为,则______.16.已知、是椭圆()长轴的两个端点,、是椭圆上关于轴对称的两点,直线,的斜率分别为,().若椭圆的离心率为,则的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,底面是边长为2的正方形,,,且,为的中点(1)求平面与平面夹角的余弦值;(2)在线段上是否存在点,使得点到平面的距离为?若存在,确定点的位置;若不存在,请说明理由18.(12分)已知圆(1)若直线与圆C相交于A、B两点,当弦长最短时,求直线l的方程;(2)若与圆C相外切且与y轴相切的圆的圆心记为D,求D点的轨迹方程19.(12分)已知抛物线y2=2px(p>0)的焦点为F,过F且与x轴垂直的直线交该抛物线于A,B两点,|AB|=4(1)求抛物线的方程;(2)过点F的直线l交抛物线于P,Q两点,若△OPQ的面积为4,求直线l的斜率(其中O为坐标原点)20.(12分)中,三内角A,B,C所对的边分别为a,b,c,已知(1)求角A;(2)若,角A的角平分线交于D,,求a21.(12分)在三棱柱中,侧面正方形的中心为点平面,且,点满足(1)若平面,求的值;(2)求点到平面的距离;(3)若平面与平面所成角的正弦值为,求的值22.(10分)设双曲线的左、右焦点分别为,,且,一条渐近线的倾斜角为60°(1)求双曲线C的标准方程和离心率;(2)求分别以,为左、右顶点,短轴长等于双曲线虚轴长的椭圆的标准方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意,设等比数列的公比为,由等比数列的性质求出,再求出【详解】根据题意,设等比数列的公比为,若,,则,变形可得,则,故选:2、B【解析】根据题意可知,即可由求出,再根据焦点位置得出椭圆方程【详解】因为,所以,而焦点在轴上,所以椭圆方程为故选:B3、B【解析】根据异面直线的定义找出角即为所求,再利用余弦定理解三角形即可得出.【详解】分别取BC,PB的中点F,G,连接DF,FG,DG,如图,因为E为AD的中点,四边形ABCD是菱形,所以,所以(其补角)是异面直线PC与BE所成的角因为底面ABCD是边长为4菱形,且,,由余弦定理可知,所以,所以,所以异面直线PC与BE所成角的余弦值为,故选:B4、A【解析】由题知为弦AB的中点,可得直线与过圆心和点的直线垂直,可求的斜率,然后用点斜式求出的方程【详解】由题意知圆的圆心为,,由,得,∴弦所在直线的方程为,整理得.选A.【点睛】本题考查直线与圆的位置关系,直线的斜率,直线的点斜式方程,属于基础题5、D【解析】先找临界情况当PQ与圆C相切时,,进而可得满足条件的点P形成的图形为大圆(包括内部),即求.【详解】当PQ与圆C相切时,,这种情况为临界情况,当P往外时无法找到点Q使,当P往里时,可以找到Q使,故满足条件的点P形成的图形为大圆(包括内部),如图,由圆,可知圆心,半径为1,则大圆的半径为,∴所有满足条件的点P构成图形的面积为.故选:D.【点睛】关键点点睛:本题的关键是找出临界情况时点所满足的条件,进而即可得到动点满足条件的图形,问题即可解决.6、D【解析】根据正方体的性质,在直角△中应用等面积法求到直线的距离.【详解】由正方体的性质:面,又面,故,直角△中,若到上的高为,∴,而,,,∴.故选:D.7、C【解析】利用简易逻辑的知识逐一判断即可.【详解】,故A正确;菱形的四边相等,但不一定是正方形,故B正确;“存在实数,使”的否定是“对任意的实数都有”,故C错误;假设且,则,与矛盾,故D正确;故选:C8、C【解析】首先根据题设条件可得,然后利用累加法可得,所以,最后利用裂项相消法求和即可.【详解】由,得,则,所以,.故选:C.【点睛】本题考查累加法求数列通项,考查利用错位相减法求数列的前n项和,考查逻辑思维能力和计算能力,属于常考题.9、C【解析】求出即得解.【详解】解:由题意得,故质点在第1秒末的瞬时速度为.故选:C10、B【解析】由直线方程,可知直线的斜率,设直线的倾斜角为,则,又,所以,故选11、A【解析】设圆的圆心,表示出半径,再由圆心到切线距离等于半径即可列出方程求得参数及圆的方程.【详解】∵圆的圆心在直线上,∴设圆心为(a,-a),∵圆过,∴半径r=,又∵圆与相切,∴半径r=,则,解得a=2,故圆心为(2,-2),半径为,故方程为.故选:A.12、A【解析】由导数与极值与最值的关系,列式求实数的值.【详解】由条件可知,,,解得:,,检验,时,当,得或,函数的单调递增区间是和,当,得,所以函数的单调递减区间是,所以当时,函数取得极小值,满足条件.所以.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据双曲线的定义可得答案.【详解】因为,所以动点P的轨迹是焦点为A,B,实轴长为4的双曲线的上支.因为,所以,所以动点P的轨迹方程为故答案为:.14、8x2﹣y2=1【解析】延长F1H与PF2,交于K,连接OH,由三角形的中位线定理和双曲线的定义、垂直平分线的性质,结合双曲线的a,b,c的关系,可得双曲线方程【详解】解:延长F1H与PF2,交于K,连接OH,由题意可得PH为边KF1的垂直平分线,则|PF1|=|PK|,且H为KF1的中点,|OH|=|KF2|,由双曲线的定义可得|PF1|﹣|PF2|=|PK|﹣|PF2|=|F2K|=2a,则|OH|=a,又|F1F2|=6|OH|,所以2c=6a,即c=3a,b==2a,又双曲线C:﹣y2=1,知b=1,所以a=,所以双曲线的方程为8x2﹣y2=1故答案为:8x2﹣y2=115、【解析】过焦点作直线要分为有斜率和斜率不存在两种情况进行分类讨论.【详解】抛物线的焦点当过焦点的直线斜率不存在时,直线方程可设为,不妨令则,故当过焦点的直线斜率存在时,直线方程可设为,令由整理得则,综上,故答案为:16、【解析】设出点,,,的坐标,表示出直线,的斜率,作和后利用基本不等式求最值,利用离心率求得与的关系,则答案可求详解】解:设,,,,,,,,,,,当且仅当,即时等号成立,是椭圆长轴的两个端点,,是椭圆上关于轴对称的两点,,,即,的最小值为,椭圆的离心率为,,即,得,的最小值为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在,点为线段的靠近点的三等分点【解析】(1)根据题意证得平面,进而证得平面,得到平面,以点为坐标原点,,,所在直线分别为轴、轴和轴建立空间直角坐标系,求得平面和平面的法向量,结合向量的夹角公式,即可求解;(2)设点,求得平面的法向量为,结合向量的距离公式列出方程,求得的值,即可得到答案.【小问1详解】解:因为四边形为正方形,则,,由,,,所以平面,因为平面,所以,又由,,,所以平面,又因为平面,所以,因为且平面,所以平面,由平面,且,不妨以点为坐标原点,,,所在直线分别为轴、轴和轴建立空间直角坐标系,如图所示,则,,,,可得,,,设平面的法向量为,则,取,可得,所以,易得平面的法向量为,则,由平面与平面夹角为锐角,所以平面与平面夹角的余弦值【小问2详解】解:设点,可得,,设平面的法向量为,则,取,可得,所以,所以点到平面的距离为,解得,即或因为,所以故当点为线段的靠近点的三等分点时,点到平面的距离为.18、(1)(2)【解析】(1)先求出直线过的定点,再根据弦长|AB|最短时,求解.(2)用直译法求解【小问1详解】直线即,所以直线过定点.当弦长|AB|最短时,因为直线PC的斜率所以此时直线的斜率所以当弦长|AB|最短时,求直线的方程为,即【小问2详解】设,易知圆心D在轴上方,圆D半径为因为圆与圆外切,所以即整理得点的轨迹方程为19、(1);(2).【解析】(1)根据抛物线的定义以及抛物线通径的性质可得,从而可得结果;(2)设直线的方程为,代入,得,利用弦长公式,结合韦达定理可得的值,由点到直线的距离公式,根据三角形面积公式可得,从而可得结果.【详解】(1)由抛物线的定义得到准线的距离都是p,所以|AB|=2p=4,所以抛物线的方程为y2=4x(2)设直线l的方程为y=k(x-1),P(x1,y1),Q(x2,y2)因为直线l与抛物线有两个交点,所以k≠0,得,代入y2=4x,得,且恒成立,则,y1y2=-4,所以又点O到直线l的距离,所以,解得,即【点睛】本题主要考查直线与抛物线的位置关系的相关问题,意在考查综合利用所学知识解决问题能力和较强的运算求解能力,其常规思路是先把直线方程与圆锥曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题20、(1)(2)【解析】(1)根据正弦定理统一三角函数化简即可求解;(2)根据角平分线建立三角形面积方程求出b,再由余弦定理求解即可.【小问1详解】由及正弦定理,得∵,∴∵,∴∵,∴【小问2详解】∵,∴,解得由余弦定理,得,∴.21、(1);(2);(3)或.【解析】(1)连接ME,证明即可计算作答.(2)以为原点,的方向分别为轴正方向建立空间直角坐标系,借助空间向量计算点到平面的距离即可.(3)由(2)中空间直角坐标系,借助空间向量求平面与平面所成角的余弦即可计算作答.【小问1详解】在三棱柱中,因,即点在上,连接ME,如图,因平面面,面面,则有,而为中点,于是得为的中点,所以.【小问2详解】在三棱柱中,面面,则点到平面的距离等于点到平面的距离,又为正方形,即,而平面,以为原点,的方向分别为轴正方向建立空间直角坐标系,如图,依题意,,则,,设平面的法向量为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论