西藏日喀则市南木林高级中学2025届高二数学第一学期期末联考试题含解析_第1页
西藏日喀则市南木林高级中学2025届高二数学第一学期期末联考试题含解析_第2页
西藏日喀则市南木林高级中学2025届高二数学第一学期期末联考试题含解析_第3页
西藏日喀则市南木林高级中学2025届高二数学第一学期期末联考试题含解析_第4页
西藏日喀则市南木林高级中学2025届高二数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

西藏日喀则市南木林高级中学2025届高二数学第一学期期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若平面的一个法向量为,点,,,,到平面的距离为()A.1 B.2C.3 D.42.若函数,满足且,则()A.1 B.2C.3 D.43.若圆与圆相外切,则的值为()A. B.C.1 D.4.已知向量分别是直线的方向向量,若,则()A. B.C. D.5.设双曲线的左、右顶点分别为、,左、右焦点分别为、,以为直径的圆与双曲线左支的一个交点为若以为直径的圆与直线相切,则的面积为()A. B.C. D.6.已知数列为等差数列,若,则()A.1 B.2C.3 D.47.在四面体中,,,,且,,则等于()A. B.C. D.8.已知等比数列的各项均为正数,且,则()A. B.C. D.9.若数列1,a,b,c,9是等比数列,则实数b的值为()A.5 B.C.3 D.3或10.直线的倾斜角为()A.30° B.60°C.90° D.120°11.为了解青少年视力情况,统计得到名青少年的视力测量值(五分记录法)的茎叶图,其中茎表示个位数,叶表示十分位数,则该组数据的中位数是()A. B.C. D.12.已知数列满足,令是数列的前n项积,,现给出下列四个结论:①;②为单调递增的等比数列;③当时,取得最大值;④当时,取得最大值其中所有正确结论的编号为()A.②④ B.①③C.②③④ D.①③④二、填空题:本题共4小题,每小题5分,共20分。13.如图,正方体的棱长为1,P为BC的中点,Q为线段上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是_________(写出所有正确命题的编号).①当时,S为四边形;②当时,S为等腰梯形;③当时,S与的交点R满足;④当时,S为六边形;⑤当时,S的面积为.14.已知P是椭圆的上顶点,过原点的直线l交C于A,B两点,若的面积为,则l的斜率为____________15.已知向量、满足,,且,则与的夹角为___________.16.在正项等比数列中,,,则的公比为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知O为坐标原点,点,设动点W到直线的距离为d,且,.(1)记动点W的轨迹为曲线C,求曲线C的方程;(2)若直线l与曲线C交于A,B两点,直线与曲线C交于,两点,直线l与的交点为P(P不在曲线C上),且,设直线l,的斜率分别为k,.求证:为定值.18.(12分)如图,在四棱锥中,侧面底面ABCD,侧棱,底面ABCD为直角梯形,其中,,,(1)求证:平面ACF;(2)在线段PB上是否存在一点H,使得CH与平面ACF所成角的正弦值为?若存在,求出线段PH的长度;若不存在,请说明理由19.(12分)设分别为椭圆的左右焦点,过的直线l与椭圆C相交于A,B两点,直线的倾斜角为60度,到直线l的距离为(1)求椭圆C的焦距;(2)如果,求椭圆C的方程20.(12分)已知椭圆的离心率为,且经过点.(1)求椭圆的标准方程;(2)已知,经过点的直线与椭圆交于、两点,若原点到直线的距离为,且,求直线的方程.21.(12分)在三棱锥A—BCD中,已知CB=CD=,BD=2,O为BD的中点,AO⊥平面BCD,AO=2,E为AC的中点(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=BC,设二面角F—DE—C的大小为θ,求sinθ的值22.(10分)如图,在四棱锥中,底面,,是的中点,,.(1)证明:;(2)求直线与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出,点A到平面的距离:,由此能求出结果【详解】解:,,,,∴为平面的一条斜线,且∴点到平面的距离:故选:B.2、C【解析】先取,得与之间的关系,然后根据导数的运算直接求导,代值可得.【详解】取,则有,即,又因为所以,所以,所以.故选:C3、D【解析】确定出两圆的圆心和半径,然后由两圆的位置关系建立方程求解即可.【详解】由可得,所以圆的圆心为,半径为,由可得,所以圆的圆心为,半径为,因为两圆相外切,所以,解得,故选:D4、C【解析】由题意,得,由此可求出答案【详解】解:∵,且分别是直线的方向向量,∴,∴,∴,故选:C【点睛】本题主要考查向量共线的坐标表示,属于基础题5、C【解析】据三角形中位线可得;再由双曲线的定义求出,进而求出的面积【详解】双曲线的方程为:,,设以为直径的圆与直线相切与点,则,且,,∥.又为的中点,,又,,的面积为:.故选:C6、D【解析】利用等差数列下标和的性质求值即可.【详解】由等差数列下标和性质知:.故选:D7、B【解析】根据空间向量的线性运算即可求解.【详解】解:由题知,故选:B.8、B【解析】利用对数的运算性质,结合等比数列的性质可求得结果.【详解】是各项均为正数的等比数列,,,,.故选:B9、C【解析】根据等比数列的定义,利用等比数列的通项公式求解【详解】解:设该等比数列公比为q,∵数列1,a,b,c,9是等比数列,∴,,∴,故,解得,∴故选:C10、B【解析】根据给定方程求出直线斜率,再利用斜率的定义列式计算得解.【详解】直线的斜率,设其倾斜角为,显然,则有,解得,直线的倾斜角为.故选:B11、B【解析】将样本中的数据由小到大进行排列,利用中位数的定义可得结果.【详解】将样本中的数据由小到大进行排列,依次为:、、、、、、、、、,因此,这组数据的中位数为.故选:B.12、B【解析】求出,即可判断选项①正确;求出,即可选项②错误;求出,利用单调性即可判断选项③正确;求出,即可判断选项④错误,即得解.【详解】解:因为,①所以,,②①②得,,整理得,又,满足上式,所以,因为,所以数列为等差数列,公差为,所以,故①正确;,因为,故数列为等比数列,其中首项,公比为的等比数列,因为,,所以数列为递减的等比数列,故②错误;,因为为单调递增函数,所以当最大时,有最大值,因为,所以时,最大,即时,取得最大值,故③正确;设,由可得,,解得或,又因为,所以时,取得最大值,故④错误;故选:B二、填空题:本题共4小题,每小题5分,共20分。13、①②③⑤【解析】①由如图当点向移动时,满足,只需在上取点满足,即可得截面为四边形,如图所示,是四边形,故①正确;②当时,即为中点,此时可得PQ∥AD,AP=QD==,故可得截面APQD为等腰梯形,等腰梯形,故②正确;③当时,如图,延长至,使,连接交于,连接交于,连接,可证,由∽,可得,故可得,故③正确;④由③可知当时,只需点上移即可,此时的截面形状仍然如图所示的,如图是五边形,故④不正确;⑤当时,与重合,取的中点,连接,可证,且,可知截面为为菱形,故其面积为,如图是菱形,面积为,故⑤正确,故答案为①②③⑤考点:正方体的性质.14、【解析】设出直线AB的方程,联立椭圆方程得到A点横坐标满足,再利用,解方程即可得到答案.【详解】设直线AB的方程为:,,由,得,所以,又所以,解得.故答案为:15、##【解析】根据向量数量积的计算公式即可计算.【详解】,,.故答案为:﹒16、3【解析】由题设知等比数列公比,根据已知条件及等比数列通项公式列方程求公比即可.【详解】由题设,等比数列公比,且,所以,可得或(舍),故公比为3.故答案为:3三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)设点,由即所以化简即可得到答案.(2)设,,设直线l的方程为:与(1)中W的轨迹方程联立,得出韦达定理,求出,同理设直线的方程为:,得出,再根据从而可证明结论.【小问1详解】设点,因为,所以,因为,所以所以所以所以所以C的方程为:【小问2详解】设,,设直线l的方程为:,则由得:所以,,所以所以设直线的方程为:,则同理可得因所以即,即,即解得,即所以为定值.18、(1)证明见解析(2)存在,的长为或,理由见解析.【解析】(1)建立空间直角坐标系,利用向量法证得平面.(2)设,求出,根据与平面所成角的正弦值列方程,由此求得,进而求得的长.小问1详解】依题意,在四棱锥中,侧面底面ABCD,侧棱,底面ABCD为直角梯形,其中,,,,以为空间坐标原点建立如图所示空间直角坐标系,,,设平面法向量为,则,故可设,由于,所以平面.【小问2详解】存在,理由如下:设,,,,依题意与平面所成角的正弦值为,即,,解得或.,即的长为或,使与平面所成角的正弦值为.19、(1)(2)【解析】(1)求得直线的方程,利用点到直线的距离列方程,由此求得,进而求得焦距.(2)联立直线的方程和椭圆方程,化简写出根与系数关系,结合来求得,从而求得椭圆的方程.【小问1详解】依题意,直线的方程为,到的距离为,所以焦距.【小问2详解】由,消去并化简得,设,则,,,,,所以,,,,,,,,,所以,所以椭圆的方程为.20、(1);(2).【解析】(1)由已知条件可得出关于、、的方程组,求出这三个量的值,由此可得出椭圆的标准方程;(2)分析可知直线的斜率存在且不为零,设直线的方程为,由点到直线的距离公式可得出,设点、,将直线的方程与椭圆的方程联立,列出韦达定理,由可得出,代入韦达定理求出、的值,由此可得出直线的方程.【详解】(1)设椭圆的焦距为,则,解得,因此,椭圆的标准方程为;(2)若直线斜率不存在,则直线过原点,不合乎题意.所以,直线的斜率存在,设斜率为,设直线方程为,设、,原点到直线的距离为,,即①.联立直线与椭圆方程可得,则,则,由韦达定理可得,.,则为线段的中点,所以,,,得,,所以,,整理可得,解得,即,,因此,直线的方程为或.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为、;(2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;(3)列出韦达定理;(4)将所求问题或题中的关系转化为、的形式;(5)代入韦达定理求解.21、(1)(2)【解析】(1)建立空间直角坐标系,利用向量数量积求直线向量夹角,即得结果;(2)先求两个平面法向量,根据向量数量积求法向量夹角,最后根据二面角与向量夹角关系得结果.【详解】(1)连以为轴建立空间直角坐标系,则从而直线与所成角的余弦值为(2)设平面一个法向量为令设平面一个法向量为令因此【点睛】本题考查利用向量求线线角与二面角,考查基本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论