2025届新疆哈密石油高中高二数学第一学期期末质量跟踪监视试题含解析_第1页
2025届新疆哈密石油高中高二数学第一学期期末质量跟踪监视试题含解析_第2页
2025届新疆哈密石油高中高二数学第一学期期末质量跟踪监视试题含解析_第3页
2025届新疆哈密石油高中高二数学第一学期期末质量跟踪监视试题含解析_第4页
2025届新疆哈密石油高中高二数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届新疆哈密石油高中高二数学第一学期期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线x-y+1=0被椭圆+y2=1所截得的弦长|AB|等于()A. B.C. D.2.对于公差为1的等差数列,;公比为2的等比数列,,则下列说法不正确的是()A.B.C.数列为等差数列D.数列的前项和为3.命题“若,则”的逆否命题是()A.若,则 B.若,则C.若,则 D.若,则4.在平面直角坐标系中,抛物线上点到焦点的距离为3,则焦点到准线的距离为()A. B.C.1 D.5.已知函数,则()A. B.0C. D.16.《周髀算经》中有这样一个问题,从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气日影长依次成等差数列,若冬至、大寒、雨水的日影长的和为36.3尺,小寒、惊蛰、立夏的日影长的和为18.3尺,则冬至的日影长为()A4尺 B.8.5尺C.16.1尺 D.18.1尺7.已知双曲线,其渐近线方程为,则a的值为()A. B.C. D.28.观察:则第行的值为()A. B.C. D.9.中国大运河项目成功人选世界文化遗产名录,成为中国第46个世界遗产项目,随着对大运河的保护与开发,大运河已成为北京城市副中心的一张亮丽的名片,也成为众多旅游者的游览目的地.今有一旅游团乘游船从奥体公园码头出发顺流而下至漕运码头,又立即逆水返回奥体公园码头,已知游船在顺水中的速度为,在逆水中的速度为,则游船此次行程的平均速度V与的大小关系是()A. B.C. D.10.设为等差数列的前项和,若,则的值为()A.14 B.28C.36 D.4811.直线分别交坐标轴于A,B两点,O为坐标原点,三角形OAB的内切圆上有动点P,则的最小值为()A.16 B.18C.20 D.2212.的展开式中的系数是()A.1792 B.C.448 D.二、填空题:本题共4小题,每小题5分,共20分。13.若双曲线的一条渐近线的倾斜角为,则双曲线的离心率为___________.14.已知,则正整数___________.15.已知点在抛物线上,那么点到点的距离与点到抛物线焦点距离之和取得最小值时,点的坐标为______16.正四棱锥底面边长和高均为分别是其所在棱的中点,则棱台的体积为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某小学调查学生跳绳的情况,在五年级随机抽取了100名学生进行测试,得到频率分布直方图如下,且规定积分规则如下表:每分钟跳绳个数得分17181920(1)求频率分布直方图中,跳绳个数在区间的小矩形的高;(2)依据频率分布直方图,把第40百分位数划为合格线,低于合格分数线的学生需补考,试确定本次测试的合格分数线;(3)依据积分规则,求100名学生的平均得分.18.(12分)在下列所给的三个条件中任选一个,补充在下面问题中,并完成解答(若选择多个条件分别解答,则按第一个解答计分).①与直线平行;②与直线垂直;③直线l的一个方向向量为;已知直线l过点,且___________.(1)求直线l的一般方程;(2)若直线l与圆C:相交于M,N两点,求弦长.19.(12分)已知,(1)当时,求函数的单调递减区间;(2)当时,,求实数a的取值范围20.(12分)已知函数,其中,.(1)当时,求曲线在点处切线方程;(2)求函数的单调区间.21.(12分)已知函数(Ⅰ)解关于的不等式;(Ⅱ)若关于的不等式恒成立,求实数的取值范围22.(10分)已知圆C:(1)若点,求过点的圆的切线方程;(2)若点为圆的弦的中点,求直线的方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】联立方程组,求出交点坐标,利用两点间的距离公式求距离.【详解】由得交点为(0,1),,则|AB|==.故选:A.2、B【解析】由等差数列的通项公式判定选项A正确;利用等比数列的通项公式求出,即判定选项B错误;利用对数的运算和等差数列的定义判定选项C正确;利用错位相减法求和,即判定选项D正确.【详解】对于A:由条件可得,,即选项A正确;对于B:由条件可得,,即选项B错误;对于C:因为,所以,则,即数列是首项和公差均为的等差数列,即选项C正确;对于D:,设数列的前项和为,则,,上面两式相减可得,所以,即选项D正确.故选:B.3、C【解析】根据逆否命题的定义写出逆否命题即得【详解】解:以否定的结论作条件、否定的条件作结论得出的命题为原命题的逆否命题,即“若,则”的逆否命题是“若,则”故选:C4、D【解析】根据给定条件求出抛物线C的焦点、准线,再利用抛物线的定义求出a值计算作答.【详解】抛物线的焦点,准线,依题意,由抛物线定义得,解得,所以抛物线焦点到准线的距离为.故选:D5、B【解析】先求导,再代入求值.详解】,所以.故选:B6、C【解析】设等差数列,用基本量代换列方程组,即可求解.【详解】由题意,从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影长依次成等差数列,记为数列,公差为d,则有,即,解得:,即冬至的日影长为16.1尺.故选:C7、A【解析】由双曲线方程,根据其渐近线方程有,求参数值即可.【详解】由渐近线,结合双曲线方程,∴,可得.故选:A.8、B【解析】根据数阵可知第行为,利用等差数列求和,即可得到答案;【详解】根据数阵可知第行为,,故选:B9、A【解析】求出平均速度V,进而结合基本不等式求得答案.【详解】易知,设奥运公园码头到漕运码头之间的距离为1,则游船顺流而下的时间为,逆流而上的时间为,则平均速度,由基本不等式可得,而,当且仅当时,两个不等式都取得“=”,而根据题意,于是.故选:A.10、D【解析】利用等差数列的前项和公式以及等差数列的性质即可求出.【详解】因为为等差数列的前项和,所以故选:D【点睛】本题考查了等差数列的前项和公式的计算以及等差数列性质的应用,属于较易题.11、B【解析】由题意,求出内切圆的半径和圆心坐标,设,则,由表示内切圆上的动点P到定点的距离的平方,从而即可求解最小值.【详解】解:因为直线分别交坐标轴于A,B两点,所以设,则,因为,所以三角形OAB的内切圆半径,内切圆圆心为,所以内切圆的方程为,设,则,因为表示内切圆上的动点P到定点的距离的平方,且在内切圆内,所以,所以,,即的最小值为18,故选:B.12、D【解析】根据二项式展开式的通项公式计算出正确答案.【详解】的展开式中,含的项为.所以的系数是.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】利用双曲线的渐近线的倾斜角,求解,关系,然后求解离心率,即可求解.【详解】双曲线一条渐近线的倾斜角为,可得,所以,所以双曲线的离心率为.故答案为:2.14、6【解析】根据组合数和排列数的运算即可求得答案.【详解】由题意,,得.故答案为:6.15、【解析】由抛物线定义可得,由此可知当为与抛物线的交点时,取得最小值,进而求得点坐标.【详解】由题意得:抛物线焦点为,准线为作,垂直于准线,如下图所示:由抛物线定义知:(当且仅当三点共线时取等号)即的最小值为,此时为与抛物线的交点故答案为【点睛】本题考查抛物线线上的点到焦点的距离与到定点距离之和最小的相关问题的求解,关键是能够熟练应用抛物线定义确定最值取得的位置.16、【解析】分别计算,,作差得到答案.【详解】分别是其所在棱的中点,则正四棱锥底面边长和高均为,,,故.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)分【解析】(1)根据频率之和为列方程来求得跳绳个数在区间的小矩形的高.(2)根据百分位数的计算方法计算出合格分数线.(3)根据平均数的求法求得名学生的平均得分.【小问1详解】设跳绳个数在区间的小矩形的高为,则,解得.【小问2详解】第一组的频率为,第二组的频率为,第三组的频率为,第四组的频率为,第五组的频率为,第六组的频率为,所以第百分位数为.也即合格分数线为.【小问3详解】名学生的平均得分为分.18、(1)若选择①②,则直线方程为:;若选择③,则直线方程为;(2)若选择①②,则;若选择③,则.【解析】(1)根据所选择的条件,结合直线过点,即可写出直线的方程;(2)利用(1)中所求直线方程,以及弦长公式,即可求得结果.【小问1详解】若选①与直线平行,则直线的斜率;又其过点,故直线的方程为,则其一般式为;若选②与直线垂直,则直线的斜率满足,解得;又其过点,故直线的方程为,则其一般式为;若选③直线l的一个方向向量为,则直线的斜率;又其过点,故直线的方程为,则其一般式为;综上所述:若选择①②,则直线方程为:;若选择③,则直线方程为.【小问2详解】对圆C:,其圆心为,半径,根据(1)中所求,若选择①②,则直线方程为,则圆心到直线的距离,则直线截圆所得弦长;若选择③,则直线方程为,则圆心到直线的距离,则直线截圆所得弦长.综上所述,若选择①②,则;若选择③,则.19、(1)(2)【解析】(1)求出函数的导函数,再解导函数的不等式,即可求出函数的单调递减区间;(2)依题意可得当时,当时,显然成立,当时只需,参变分离得到,令,,利用导数说明函数的单调性,即可求出参数的取值范围;【小问1详解】解:当时定义域为,所以,令,解得或,令,解得,所以的单调递减区间为;【小问2详解】解:由,即,即,当时显然成立,当时,只需,即,令,,则,所以在上单调递减,所以,所以,故实数的取值范围为.20、(1);(2)答案见解析.【解析】(1)当时,,求出函数的导函数,再求出,,再利用点斜式求出切线方程;(2)首先求出函数的导函数,再对参数分类讨论,求出函数的单调区间;【详解】解:(1)当时,,所以,所以,,所以切线方程为:,即:(2)函数定义域为,,因为,①当时,在上恒成立,所以函数的单调递增区间为,无单调递减区间;②当时,由得,由得,所以函数的单调递增区间为,单调递减区间为【点睛】本题考查导数的几何意义,利用导数研究含参函数的单调区间,属于基础题.21、(Ⅰ);(Ⅱ)【解析】(Ⅰ)用找零点法去绝对值,然后再解不等式.(Ⅱ)将原函数转化为分段函数,再结合函数图像求得其最小值.将恒成立转化为试题解析:(Ⅰ)或或或所以原不等式解集为(Ⅱ),由函数图像可知,所以要使恒成立,只需考点:1绝对值不等式;2恒成立问题;3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论