版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
珠海市重点中学2023-2024学年中考数学对点突破模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是()A. B. C. D.2.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是()A. B. C. D.3.下列图形中,是正方体表面展开图的是()A. B. C. D.4.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲 B.乙 C.丙 D.丁5.如图,的三边的长分别为20,30,40,点O是三条角平分线的交点,则等于()A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶56.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=7.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A、B的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为()A. B. C. D.8.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为(
)A.1个 B.2个 C.3个 D.4个9.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4 C.6 D.410.下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图甲,对于平面上不大于90°的∠MON,我们给出如下定义:如果点P在∠MON的内部,作PE⊥OM,PF⊥ON,垂足分别为点E、F,那么称PE+PF的值为点P相对于∠MON的“点角距离”,记为d(P,∠MON).如图乙,在平面直角坐标系xOy中,点P在坐标平面内,且点P的横坐标比纵坐标大2,对于∠xOy,满足d(P,∠xOy)=10,点P的坐标是_____.12.如果分式的值是0,那么x的值是______.13.对于任意不相等的两个实数,定义运算※如下:※=,如3※2==.那么8※4=.14.三角形的每条边的长都是方程的根,则三角形的周长是.15.把一张长方形纸条按如图所示折叠后,若∠AOB′=70°,则∠B′OG=_____.16.已知⊙O的面积为9πcm2,若点O到直线L的距离为πcm,则直线l与⊙O的位置关系是_____.17.一元二次方程2x2﹣3x﹣4=0根的判别式的值等于_____.三、解答题(共7小题,满分69分)18.(10分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,交AB于点D,且AD=1.设点A的坐标为(4,4)则点C的坐标为;若点D的坐标为(4,n).①求反比例函数y=的表达式;②求经过C,D两点的直线所对应的函数解析式;在(2)的条件下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.19.(5分)先化简,再求值:﹣1,其中a=2sin60°﹣tan45°,b=1.20.(8分)求不等式组的整数解.21.(10分)计算:﹣22﹣+|1﹣4sin60°|22.(10分)某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如图图表,请按正确数据解答下列各题:学生体能测试成绩各等次人数统计表体能等级调整前人数调整后人数优秀8良好16及格12不及格4合计40(1)填写统计表;(2)根据调整后数据,补全条形统计图;(3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.23.(12分)为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?24.(14分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精确到0.1m)
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.考点:三视图.2、C【解析】试题解析:∵四边形ABCD是平行四边形,故选C.3、C【解析】
利用正方体及其表面展开图的特点解题.【详解】解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.故选C.【点睛】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.4、A【解析】
根据方差的概念进行解答即可.【详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.5、C【解析】
作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,根据角平分线的性质得到OD=OE=OF,根据三角形的面积公式计算即可.【详解】作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,
∵三条角平分线交于点O,OF⊥AB,OE⊥AC,OD⊥BC,
∴OD=OE=OF,
∴S△ABO:S△BCO:S△CAO=AB:BC:CA=20:30:40=2:3:4,
故选C.【点睛】考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6、D【解析】
A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-,D选项正确.综上即可得出结论.【详解】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-=-=,D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.7、B【解析】
连接OO′,作O′H⊥OA于H.只要证明△OO′A是等边三角形即可解决问题.【详解】连接OO′,作O′H⊥OA于H,在Rt△AOB中,∵tan∠BAO==,∴∠BAO=30°,由翻折可知,∠BAO′=30°,∴∠OAO′=60°,∵AO=AO′,∴△AOO′是等边三角形,∵O′H⊥OA,∴OH=,∴OH′=OH=,∴O′(,),
故选B.【点睛】本题考查翻折变换、坐标与图形的性质、等边三角形的判定和性质、锐角三角函数等知识,解题的关键是发现特殊三角形,利用特殊三角形解决问题.8、C【解析】
根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解.【详解】解:在同一平面内,①过两点有且只有一条直线,故①正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误;③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确;④经过直线外一点有且只有一条直线与已知直线平行,故④正确,综上所述,正确的有①③④共3个,故选C.【点睛】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键.9、B【解析】
由已知条件可得,可得出,可求出AC的长.【详解】解:由题意得:∠B=∠DAC,∠ACB=∠ACD,所以,根据“相似三角形对应边成比例”,得,又AD是中线,BC=8,得DC=4,代入可得AC=,故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.10、D【解析】
根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.是轴对称图形,但不是中心对称图形,故不符合题意;B.不是轴对称图形,是中心对称图形,故不符合题意;C.是轴对称图形,但不是中心对称图形,故不符合题意;D.既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.二、填空题(共7小题,每小题3分,满分21分)11、(6,4)或(﹣4,﹣6)【解析】
设点P的横坐标为x,表示出纵坐标,然后列方程求出x,再求解即可.【详解】解:设点P的横坐标为x,则点P的纵坐标为x-2,由题意得,
当点P在第一象限时,x+x-2=10,
解得x=6,
∴x-2=4,
∴P(6,4);
当点P在第三象限时,-x-x+2=10,
解得x=-4,
∴x-2=-6,
∴P(-4,-6).
故答案为:(6,4)或(-4,-6).【点睛】本题主要考查了点的坐标,读懂题目信息,理解“点角距离”的定义并列出方程是解题的关键.12、1.【解析】
根据分式为1的条件得到方程,解方程得到答案.【详解】由题意得,x=1,故答案是:1.【点睛】本题考查分式的值为零的条件,分式为1需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.13、【解析】
根据新定义的运算法则进行计算即可得.【详解】∵※=,∴8※4=,故答案为.14、6或2或12【解析】
首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程的根,进行分情况计算.【详解】由方程,得=2或1.当三角形的三边是2,2,2时,则周长是6;当三角形的三边是1,1,1时,则周长是12;当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去;当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2.综上所述此三角形的周长是6或12或2.15、55°【解析】
由翻折性质得,∠BOG=∠B′OG,根据邻补角定义可得.【详解】解:由翻折性质得,∠BOG=∠B′OG,∵∠AOB′+∠BOG+∠B′OG=180°,∴∠B′OG=(180°﹣∠AOB′)=(180°﹣70°)=55°.故答案为55°.【点睛】考核知识点:补角,折叠.16、相离【解析】
设圆O的半径是r,根据圆的面积公式求出半径,再和点0到直线l的距离π比较即可.【详解】设圆O的半径是r,则πr2=9π,∴r=3,∵点0到直线l的距离为π,∵3<π,即:r<d,∴直线l与⊙O的位置关系是相离,故答案为:相离.【点睛】本题主要考查对直线与圆的位置关系的理解和掌握,解此题的关键是知道当r<d时相离;当r=d时相切;当r>d时相交.17、41【解析】
已知一元二次方程的根判别式为△=b2﹣4ac,代入计算即可求解.【详解】依题意,一元二次方程2x2﹣3x﹣4=0,a=2,b=﹣3,c=﹣4∴根的判别式为:△=b2﹣4ac=(﹣3)2﹣4×2×(﹣4)=41故答案为:41【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根的判别式为△=b2﹣4ac是解决问题的关键.三、解答题(共7小题,满分69分)18、(1)C(2,2);(2)①反比例函数解析式为y=;②直线CD的解析式为y=﹣x+1;(1)m=1时,S△OEF最大,最大值为.【解析】
(1)利用中点坐标公式即可得出结论;
(2)①先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;
②由n=1,求出点C,D坐标,利用待定系数法即可得出结论;
(1)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论.【详解】(1)∵点C是OA的中点,A(4,4),O(0,0),∴C,∴C(2,2);故答案为(2,2);(2)①∵AD=1,D(4,n),∴A(4,n+1),∵点C是OA的中点,∴C(2,),∵点C,D(4,n)在双曲线上,∴,∴,∴反比例函数解析式为;②由①知,n=1,∴C(2,2),D(4,1),设直线CD的解析式为y=ax+b,∴,∴,∴直线CD的解析式为y=﹣x+1;(1)如图,由(2)知,直线CD的解析式为y=﹣x+1,设点E(m,﹣m+1),由(2)知,C(2,2),D(4,1),∴2<m<4,∵EF∥y轴交双曲线于F,∴F(m,),∴EF=﹣m+1﹣,∴S△OEF=(﹣m+1﹣)×m=(﹣m2+1m﹣4)=﹣(m﹣1)2+,∵2<m<4,∴m=1时,S△OEF最大,最大值为【点睛】此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解本题的关键是建立S△OEF与m的函数关系式.19、【解析】
对待求式的分子、分母进行因式分解,并将除法化为乘法可得×-1,通过约分即可得到化简结果;先利用特殊角的三角函数值求出a的值,再将a、b的值代入化简结果中计算即可解答本题.【详解】原式=×-1=-1==,当a═2sin60°﹣tan45°=2×﹣1=﹣1,b=1时,原式=.【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的化简求值运算法则.20、-1,-1,0,1,1【解析】分析:先求出不等式组的解集,然后求出整数解.详解:,由不等式①,得:x≥﹣1,由不等式②,得:x<3,故原不等式组的解集是﹣1≤x<3,∴不等式组的整数解是:﹣1、﹣1、0、1、1.点睛:本题考查了解一元一次不等式的整数解,解答本题的关键是明确解一元一次不等式组的方法.21、-1【解析】
直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【详解】解:原式===﹣1.【点睛】此题主要考查了实数运算以及特殊角的三角函数值,正确化简各数是解题关键.22、(1)12;22;12;4;50;(2)详见解析;(3)1.【解析】
(1)求出各自的人数,补全表格即可;
(2)根据调整后的数据,补全条形统计图即可;
(3)根据“游戏”人数占的百分比,乘以1500即可得到结果.【详解】解:(1)填表如下:体能等级调整前人数调整后人数优秀812良好1622及格1212不及格44合计4050故答案为12;22;12;4;50;(2)补全条形统计图,如图所示:(3)抽取的学生中体能测试的优秀率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于2024年度市场需求的房产买卖合同2篇
- 产品订货合同范文
- 工程材料采购合同
- 人教版九年级化学第四单元自然界的水4化学式与化合价课时4有关相对分子质量的计算教学课件
- 基于2024年度的智能家居系统开发合同
- 青年员工职业发展规划银行文档
- 农商银行新员工培训文档
- 新车销售代购合同范本
- 护理与安全用药与管理
- 2024年度版权许可合同:音乐作品授权使用协议2篇
- 畜禽及其产品检疫检验技术讲义培训课件
- 劳动创造美好生活中职生劳动教育PPT完整全套教学课件
- 统编人教版高中地理必修第一册全册教案教学设计(含教学计划教学进度表问题研究章末综合测试卷及答案)
- 医院器械科呼吸机巡查表
- 详解宣贯公安机关信访工作规定内容课件
- 全广州版英语六年级上册单词带音标
- 山东中医药高等专科学校工作人员招聘考试真题2022
- 厨房天然气风险辨识表
- 网络工程师培养计划
- 箱变常见故障及处理
- 中华优秀传统文化知到章节答案智慧树2023年青岛黄海学院
评论
0/150
提交评论