2025届湖南省百所重点名校大联考高二数学第一学期期末综合测试试题含解析_第1页
2025届湖南省百所重点名校大联考高二数学第一学期期末综合测试试题含解析_第2页
2025届湖南省百所重点名校大联考高二数学第一学期期末综合测试试题含解析_第3页
2025届湖南省百所重点名校大联考高二数学第一学期期末综合测试试题含解析_第4页
2025届湖南省百所重点名校大联考高二数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省百所重点名校大联考高二数学第一学期期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列关系中,正确的是()A. B.C. D.2.如图,正四棱柱是由四个棱长为1的小正方体组成的,是它的一条侧棱,是它的上底面上其余的八个点,则集合的元素个数()A.1 B.2C.4 D.83.已知双曲线的离心率为2,则()A.2 B.C. D.14.“若”为真命题,那么p是(

)A. B.C. D.5.已知两条不同直线和平面,下列判断正确的是()A.若则 B.若则C.若则 D.若则6.已知A(-1,1,2),B(1,0,-1),设D在直线AB上,且,设C(λ,+λ,1+λ),若CD⊥AB,则λ的值为()A. B.-C. D.7.已知点到直线的距离为1,则m的值为()A.或 B.或15C.5或 D.5或158.年月日,很多人的微信圈都在转发这样一条微信:“,所遇皆为对,所做皆称心””.形如“”的数字叫“回文数”,即从左到右读和从右到左读都一样的正整数,则位的回文数共有()A. B.C. D.9.变量,满足约束条件则的最小值为()A. B.C. D.510.已知数列为等比数列,若,则的值为()A.-4 B.4C.-2 D.211.已知x,y是实数,且,则的最大值是()A. B.C. D.12.阿基米德(公元前287年~公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到的椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的对称轴为坐标轴,焦点在y轴上,且椭圆C的离心率为,面积为6π,则椭圆C的标准方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的左、右焦点分别为,,过点的直线与椭圆交于A,B两点,线段AB的长为5,若,那么△的周长是______.14.已知数列中,,,则_______.15.已知5件产品中有2件次品、3件合格品,从这5件产品中任取2件,求2件都是合格品的概率_______.16.近年来,我国外卖业发展迅猛,外卖小哥穿梭在城市的大街小巷成为一道道亮丽的风景线.他们根据外卖平台提供的信息到外卖店取单,某外卖小哥每天来往于r个外卖店(外卖店的编号分别为1,2,…,r,其中),约定:每天他首先从1号外卖店取单,称为第1次取单,之后,他等可能的前往其余个外卖店中的任何一个店取单,称为第2次取单,依此类推.假设从第2次取单开始,他每次都是从上次取单的店之外的个外卖店取单.设事件表示“第k次取单恰好是从1号店取单()”,是事件发生的概率,显然,,则______,与的关系式为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在直三棱柱中,,,与交于点,为的中点,(1)求证:平面;(2)求证:平面平面18.(12分)设函数(1)若,求的单调区间和极值;(2)在(1)的条件下,证明:若存在零点,则在区间上仅有一个零点;(3)若存在,使得,求的取值范围19.(12分)已知直线,以点为圆心的圆C与直线l相切(1)求圆C的标方程;(2)过点的直线交圆C于A,B两点,且,求的方程20.(12分)已知圆的半径为,圆心在直线上,点在圆上.(1)求圆的标准方程;(2)若原点在圆内,求过点且与圆相切的直线方程.21.(12分)已知双曲线的左、右焦点分别为,过作斜率为的弦.求:(1)弦的长;(2)△的周长.22.(10分)如图,已知正四棱锥中,O为底面对角线的交点.(1)求证:平面;(2)求证:平面.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据对数函数的性质判断A,根据指数函数的性质判断B,根据正弦函数的性质及诱导公式判断C,根据余弦函数的性质及诱导公式判断D;【详解】解:对于A:因为,,,故A错误;对于B:因为在定义域上单调递减,因为,所以,又,,因为在上单调递增,所以,所以,所以,故B正确;对于C:因为在上单调递减,因为,所以,又,所以,故C错误;对于D:因为在上单调递减,又,所以,又,所以,故D错误;故选:B2、A【解析】用空间直角坐标系看正四棱柱,根据向量数量积进行计算即可.【详解】建立空间直角坐标系,为原点,正四棱柱的三个边的方向分别为轴、轴和看轴,如右图示,,设,则AB所以集合,元素个数为1.故选:A.3、D【解析】由双曲线的性质,直接表示离心率,求.【详解】由双曲线方程可知,因为,所以,解得:,又,所以.故选:D【点睛】本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题能力,属于中档题型,一般求双曲线离心率的方法:

直接法:直接求出,然后利用公式求解;2.公式法:,3.构造法:根据条件,可构造出的齐次方程,通过等式两边同时除以,进而得到关于的方程.4、A【解析】求不等式的解集,根据解集判断p.【详解】由解得-2<x<4,所以p是.故选:A.5、D【解析】根据线线、线面、面面的平行与垂直的位置关系即可判断.【详解】解:对于选项A:若,则与可能平行,可能相交,可能异面,故选项A错误;对于选项B:若,则,故选项B错误;对于选项C:当时不满足,故选项C错误;综上,可知选项D正确.故选:D.6、B【解析】设D(x,y,z),根据求出D(,,0),再根据CD⊥AB得·=2(-λ)+λ-3(-1-λ)=0,解方程即得λ的值.【详解】设D(x,y,z),则=(x+1,y-1,z-2),=(2,-1,-3),=(1-x,-y,-1-z),∵=2,∴∴∴D(,,0),=(-λ,-λ,-1-λ),∵⊥,∴·=2(-λ)+λ-3(-1-λ)=0,∴λ=-故选:B【点睛】(1)本题主要考查向量的线性运算和空间向量垂直的坐标表示,意在考查学生对这些知识的掌握水平和分析推理能力.(2).7、D【解析】利用点到直线距离公式即可得出.【详解】解:点到直线的距离为1,解得:m=15或5故选:D.8、C【解析】根据“回文数”的对称性,只需计算前位数的排法种数即可,确定这四位数的选数的种数,利用分步乘法计数原理可得结果.【详解】根据“回文数”的对称性,只需计算前位数的排法种数即可,首位数不能放零,首位数共有种选择,第二位、第三位、第四位数均有种选择,因此,位的回文数共有个.故选:C.9、A【解析】根据不等式组,作出可行域,数形结合即可求z的最小值.【详解】根据不等式组作出可行域如图,,则直线过A(-1,0)时,z取最小值.故选:A.10、B【解析】根据,利用等比数列的通项公式求解.【详解】因为,所以,则,解得,所以.故选:B11、D【解析】将方程化为圆的标准方程,则的几何意义是圆上一点与点连线的斜率,进而根据直线与圆相切求得答案.【详解】方程可化为,表示以为圆心,为半径的圆,的几何意义是圆上一点与点A连线的斜率,设,即,当此直线与圆相切时,斜率最大或最小,当切线位于切线AB时斜率最大.此时,,,所以的最大值为.故选:D12、D【解析】设椭圆的方程为,根据题意得到和,求得的值,即可求解.【详解】由题意,椭圆的焦点在轴上,可设椭圆的方程为,因为椭圆C的离心率为,可得,又由,即,解得,又因为椭圆的面积为,可得,即,联立方程组,解答,所以椭圆方程为.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、16【解析】利用椭圆的定义可知,又△的周长,即可求焦点三角形的周长.【详解】由椭圆定义知:,所以△的周长为.故答案为:16.14、【解析】根据递推公式一一计算即可;【详解】解:因为,所以,,,故答案为:15、##【解析】列举总的基本事件及满足题目要求的基本事件,然后用古典概型的概率公式求解即可.【详解】设5件产品中的次品为,合格品为,则从这5件产品中任取2件,有共10个基本事件,其中2件都是合格品的有共3个基本事件,故2件都是合格品的概率为故答案为:.16、①.②.【解析】根据题意,结合条件概率的计算公式,即可求解.【详解】根据题意,事件表示“第3次取单恰好是从1号店取单”,因此;同理故答案为:;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解析】(1)根据直棱柱的性质、平行四边形的性质,结合三角形中位线定理、线面平行的判定定理进行证明即可;(2)根据直棱柱的性质、菱形的判定定理和性质,结合线面垂直的判定定理、面面垂直的判定定理进行证明即可.【小问1详解】在直三棱柱中,,且四边形平行四边形,又,则为的中点,又为的中点,故,即:,且平面,平面,所以平面;【小问2详解】在直三棱柱中,平面,平面,则,且,,平面,故平面,因为平面,所以,又在平行四边形中,,则四边形菱形,所以,且,平面,故平面,因为平面,所以平面平面.18、(1)递减区间是,单调递增区间是,极小值(2)证明见解析(3)【解析】(1)对函数进行求导通分化简,求出解得,在列出与在区间上的表格,即可得到答案.(2)由(1)知,在区间上的最小值为,因为存在零点,所以,从而.在对进行分类讨论,再利用函数的单调性得出结论.(3)构造函数,在对进行求导,在对进行分情况讨论,即可得的得到答案.【小问1详解】函数的定义域为,,由解得与在区间上的情况如下:–↘↗所以,的单调递减区间是,单调递增区间是;在处取得极小值,无极大值【小问2详解】由(1)知,在区间上的最小值为因为存在零点,所以,从而当时,在区间上单调递减,且,所以是在区间上的唯一零点当时,在区间上单调递减,且,所以在区间上仅有一个零点综上可知,若存在零点,则在区间上仅有一个零点【小问3详解】设,①若,则,符合题意②若,则,故当时,,在上单调递增所以,存在,使得的充要条件为,解得③若,则,故当时,;当时,在上单调递减,在上单调递增所以,存在,使得的充要条件为,而,所以不合题意综上,的取值范围是【点睛】本题考查求函数的单调区间和极值、证明给定区间只有一个零点问题,以及含参存在问题,属于难题.19、(1)(2)或【解析】(1)根据点到直线的距离公式求出半径,即可得到圆C的标方程;(2)根据弦长公式可求出圆心C到直线的距离,再根据点到直线的距离公式结合分类讨论思想即可求出【小问1详解】设圆C的半径为r,∵C与l相切,∴,∴圆C的标准方程为【小问2详解】由可得圆心C到直线的距离∴当的斜率不存在时,其方程为,此时圆心到的距离为3,符合条件;当的斜率存在时,设,圆心C到直线的距离,解得,此时的方程为,即综上,的方程为或20、(1)或(2)或【解析】(1)先设出圆的标准方程,利用点在圆上和圆心在直线上得到圆心坐标的方程组,进而求出圆的标准方程;(2)先利用原点在圆内求出圆的方程,设出切线方程,利用圆心到切线的距离等于半径进行求解.【小问1详解】解:设圆的标准方程为,由已知得,解得或,故圆的方程为或.【小问2详解】解:因为,,且原点在圆内,故圆的方程为,则圆心为,半径为,设切线为,即,则,解得或,故切线为或,即或即为所求.21、(1);(2).【解析】(1)联立直线方程与双曲线方程,求得交点的坐标,再用两点之间的距离公式即可求得;(2)根据(1)中所求,利用两点之间的距离公式,即可求得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论